Maxima and Minima
Application of Derivatives

85702 Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a function defined by \(f(x)=\) \((x-3)^{n_{1}}(x-5)^{n_{2}}, n_{1}, n_{2} \in N\). The, which of the following is NOT true?

1 For \(\mathrm{n}_{1}=3, \mathrm{n}_{2}=4\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
2 For \(\mathrm{n}_{1}=4, \mathrm{n}_{2}=3\), there exists \(\alpha \in(3,5)\) where \(f\) attains local minima
3 For \(\mathrm{n}_{1}=3, \mathrm{n}_{2}=5\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
4 For \(\mathrm{n}_{1}=4, \mathrm{n}_{2}=6\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
Application of Derivatives

85703 The sum of the absolute minimum and the absolute maximum values of the function \(f(x)=\) \(\left|3 x-x^{2}+2\right|-x\) in the interval \([-1,2]\) is :

1 \(\frac{\sqrt{17}+3}{2}\)
2 \(\frac{\sqrt{17}+5}{2}\)
3 5
4 \(\frac{9-\sqrt{17}}{2}\)
Application of Derivatives

85704 If \(m\) and \(n\) respectively are the number of local maximum and local minimum points of the function \(f(x)=\int_{0}^{x^{2}} \frac{t^{2}-5 t+4}{2+e^{t}} d t\), then the ordered pair \((m, n)\) is equal \(\mathbf{t}\)

1 \((3,2)\)
2 \((2,3)\)
3 \((2,2)\)
4 \((3,4)\)
Application of Derivatives

85705 The curve \(y(x)=a x^{3}+b x^{2}+c x+5\) touches the \(x\)-axis at the point \(P(-2,0)\) and cuts the \(y\)-axis at the point \(Q\), where \(y\) is equal to 3 . Then the local maximum value of \(y(x)\) is :

1 \(\frac{27}{4}\)
2 \(\frac{29}{4}\)
3 \(\frac{37}{4}\)
4 \(\frac{9}{2}\)
Application of Derivatives

85702 Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a function defined by \(f(x)=\) \((x-3)^{n_{1}}(x-5)^{n_{2}}, n_{1}, n_{2} \in N\). The, which of the following is NOT true?

1 For \(\mathrm{n}_{1}=3, \mathrm{n}_{2}=4\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
2 For \(\mathrm{n}_{1}=4, \mathrm{n}_{2}=3\), there exists \(\alpha \in(3,5)\) where \(f\) attains local minima
3 For \(\mathrm{n}_{1}=3, \mathrm{n}_{2}=5\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
4 For \(\mathrm{n}_{1}=4, \mathrm{n}_{2}=6\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
Application of Derivatives

85703 The sum of the absolute minimum and the absolute maximum values of the function \(f(x)=\) \(\left|3 x-x^{2}+2\right|-x\) in the interval \([-1,2]\) is :

1 \(\frac{\sqrt{17}+3}{2}\)
2 \(\frac{\sqrt{17}+5}{2}\)
3 5
4 \(\frac{9-\sqrt{17}}{2}\)
Application of Derivatives

85704 If \(m\) and \(n\) respectively are the number of local maximum and local minimum points of the function \(f(x)=\int_{0}^{x^{2}} \frac{t^{2}-5 t+4}{2+e^{t}} d t\), then the ordered pair \((m, n)\) is equal \(\mathbf{t}\)

1 \((3,2)\)
2 \((2,3)\)
3 \((2,2)\)
4 \((3,4)\)
Application of Derivatives

85705 The curve \(y(x)=a x^{3}+b x^{2}+c x+5\) touches the \(x\)-axis at the point \(P(-2,0)\) and cuts the \(y\)-axis at the point \(Q\), where \(y\) is equal to 3 . Then the local maximum value of \(y(x)\) is :

1 \(\frac{27}{4}\)
2 \(\frac{29}{4}\)
3 \(\frac{37}{4}\)
4 \(\frac{9}{2}\)
Application of Derivatives

85702 Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a function defined by \(f(x)=\) \((x-3)^{n_{1}}(x-5)^{n_{2}}, n_{1}, n_{2} \in N\). The, which of the following is NOT true?

1 For \(\mathrm{n}_{1}=3, \mathrm{n}_{2}=4\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
2 For \(\mathrm{n}_{1}=4, \mathrm{n}_{2}=3\), there exists \(\alpha \in(3,5)\) where \(f\) attains local minima
3 For \(\mathrm{n}_{1}=3, \mathrm{n}_{2}=5\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
4 For \(\mathrm{n}_{1}=4, \mathrm{n}_{2}=6\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
Application of Derivatives

85703 The sum of the absolute minimum and the absolute maximum values of the function \(f(x)=\) \(\left|3 x-x^{2}+2\right|-x\) in the interval \([-1,2]\) is :

1 \(\frac{\sqrt{17}+3}{2}\)
2 \(\frac{\sqrt{17}+5}{2}\)
3 5
4 \(\frac{9-\sqrt{17}}{2}\)
Application of Derivatives

85704 If \(m\) and \(n\) respectively are the number of local maximum and local minimum points of the function \(f(x)=\int_{0}^{x^{2}} \frac{t^{2}-5 t+4}{2+e^{t}} d t\), then the ordered pair \((m, n)\) is equal \(\mathbf{t}\)

1 \((3,2)\)
2 \((2,3)\)
3 \((2,2)\)
4 \((3,4)\)
Application of Derivatives

85705 The curve \(y(x)=a x^{3}+b x^{2}+c x+5\) touches the \(x\)-axis at the point \(P(-2,0)\) and cuts the \(y\)-axis at the point \(Q\), where \(y\) is equal to 3 . Then the local maximum value of \(y(x)\) is :

1 \(\frac{27}{4}\)
2 \(\frac{29}{4}\)
3 \(\frac{37}{4}\)
4 \(\frac{9}{2}\)
Application of Derivatives

85702 Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a function defined by \(f(x)=\) \((x-3)^{n_{1}}(x-5)^{n_{2}}, n_{1}, n_{2} \in N\). The, which of the following is NOT true?

1 For \(\mathrm{n}_{1}=3, \mathrm{n}_{2}=4\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
2 For \(\mathrm{n}_{1}=4, \mathrm{n}_{2}=3\), there exists \(\alpha \in(3,5)\) where \(f\) attains local minima
3 For \(\mathrm{n}_{1}=3, \mathrm{n}_{2}=5\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
4 For \(\mathrm{n}_{1}=4, \mathrm{n}_{2}=6\), there exists \(\alpha \in(3,5)\) where \(f\) attains local maxima
Application of Derivatives

85703 The sum of the absolute minimum and the absolute maximum values of the function \(f(x)=\) \(\left|3 x-x^{2}+2\right|-x\) in the interval \([-1,2]\) is :

1 \(\frac{\sqrt{17}+3}{2}\)
2 \(\frac{\sqrt{17}+5}{2}\)
3 5
4 \(\frac{9-\sqrt{17}}{2}\)
Application of Derivatives

85704 If \(m\) and \(n\) respectively are the number of local maximum and local minimum points of the function \(f(x)=\int_{0}^{x^{2}} \frac{t^{2}-5 t+4}{2+e^{t}} d t\), then the ordered pair \((m, n)\) is equal \(\mathbf{t}\)

1 \((3,2)\)
2 \((2,3)\)
3 \((2,2)\)
4 \((3,4)\)
Application of Derivatives

85705 The curve \(y(x)=a x^{3}+b x^{2}+c x+5\) touches the \(x\)-axis at the point \(P(-2,0)\) and cuts the \(y\)-axis at the point \(Q\), where \(y\) is equal to 3 . Then the local maximum value of \(y(x)\) is :

1 \(\frac{27}{4}\)
2 \(\frac{29}{4}\)
3 \(\frac{37}{4}\)
4 \(\frac{9}{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here