Maxima and Minima
Application of Derivatives

85698 Let \(f(\mathrm{x})=\mathbf{a x}^{3}+\mathbf{b x}^{2}+\mathbf{c x}+1\) have extrema at \(\mathrm{x}\) \(=\alpha, \beta\) such that \(\alpha \beta\lt 0\) and \(f(\alpha) f(\beta)\lt 0\). Then the equation \(f(x)=0\) has

1 three equal roots
2 one negative root if \(f(\alpha)\lt 0\) and \(f(\beta)>0\)
3 one positive root if \(f(\alpha)>0\) and \(f(\beta)\lt 0\)
4 None of these
Application of Derivatives

85699 The minimum value of \(\sec \theta+\operatorname{cosec} \theta\) is

1 2
2 \(2 \sqrt{2}\)
3 4
4 \(4 \sqrt{2}\)
Application of Derivatives

85700 Maximum value of \(f(x)=\sin x+\cos x\) is

1 \(\sqrt{2}\)
2 2
3 \(1 / \sqrt{2}\)
4 1
Application of Derivatives

85701 If the minimum value of \(f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0\), is 14 then the value of \(\alpha\) is equal to :

1 32
2 64
3 128
4 256
Application of Derivatives

85698 Let \(f(\mathrm{x})=\mathbf{a x}^{3}+\mathbf{b x}^{2}+\mathbf{c x}+1\) have extrema at \(\mathrm{x}\) \(=\alpha, \beta\) such that \(\alpha \beta\lt 0\) and \(f(\alpha) f(\beta)\lt 0\). Then the equation \(f(x)=0\) has

1 three equal roots
2 one negative root if \(f(\alpha)\lt 0\) and \(f(\beta)>0\)
3 one positive root if \(f(\alpha)>0\) and \(f(\beta)\lt 0\)
4 None of these
Application of Derivatives

85699 The minimum value of \(\sec \theta+\operatorname{cosec} \theta\) is

1 2
2 \(2 \sqrt{2}\)
3 4
4 \(4 \sqrt{2}\)
Application of Derivatives

85700 Maximum value of \(f(x)=\sin x+\cos x\) is

1 \(\sqrt{2}\)
2 2
3 \(1 / \sqrt{2}\)
4 1
Application of Derivatives

85701 If the minimum value of \(f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0\), is 14 then the value of \(\alpha\) is equal to :

1 32
2 64
3 128
4 256
Application of Derivatives

85698 Let \(f(\mathrm{x})=\mathbf{a x}^{3}+\mathbf{b x}^{2}+\mathbf{c x}+1\) have extrema at \(\mathrm{x}\) \(=\alpha, \beta\) such that \(\alpha \beta\lt 0\) and \(f(\alpha) f(\beta)\lt 0\). Then the equation \(f(x)=0\) has

1 three equal roots
2 one negative root if \(f(\alpha)\lt 0\) and \(f(\beta)>0\)
3 one positive root if \(f(\alpha)>0\) and \(f(\beta)\lt 0\)
4 None of these
Application of Derivatives

85699 The minimum value of \(\sec \theta+\operatorname{cosec} \theta\) is

1 2
2 \(2 \sqrt{2}\)
3 4
4 \(4 \sqrt{2}\)
Application of Derivatives

85700 Maximum value of \(f(x)=\sin x+\cos x\) is

1 \(\sqrt{2}\)
2 2
3 \(1 / \sqrt{2}\)
4 1
Application of Derivatives

85701 If the minimum value of \(f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0\), is 14 then the value of \(\alpha\) is equal to :

1 32
2 64
3 128
4 256
Application of Derivatives

85698 Let \(f(\mathrm{x})=\mathbf{a x}^{3}+\mathbf{b x}^{2}+\mathbf{c x}+1\) have extrema at \(\mathrm{x}\) \(=\alpha, \beta\) such that \(\alpha \beta\lt 0\) and \(f(\alpha) f(\beta)\lt 0\). Then the equation \(f(x)=0\) has

1 three equal roots
2 one negative root if \(f(\alpha)\lt 0\) and \(f(\beta)>0\)
3 one positive root if \(f(\alpha)>0\) and \(f(\beta)\lt 0\)
4 None of these
Application of Derivatives

85699 The minimum value of \(\sec \theta+\operatorname{cosec} \theta\) is

1 2
2 \(2 \sqrt{2}\)
3 4
4 \(4 \sqrt{2}\)
Application of Derivatives

85700 Maximum value of \(f(x)=\sin x+\cos x\) is

1 \(\sqrt{2}\)
2 2
3 \(1 / \sqrt{2}\)
4 1
Application of Derivatives

85701 If the minimum value of \(f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0\), is 14 then the value of \(\alpha\) is equal to :

1 32
2 64
3 128
4 256