85694 If the maximum value of a, for which the function fa(x)=tan−12x−3ax+7 is nondecreasing in (−π6,π6), is a―, then fa―(π8) is equal to
(A) : Given,Function f(x)=tan−12x−3ax+7Then, ∫01(x)=1×21+(2x)2−3a∫01(x)=21+4x2−3aFor maxima/ minimum ∫01(x)=021+4x2−3a=03a=21+4x2a=23(1+4x2)* Since, f(x) is non-decreasing in (−π6,π6)Then, a=23(1+4×π236)a=23(1+π29)=2×93(9+π2)So, ∫a(π8)=tan−12×π8−3×2×93(9+π2)×π8+7=tan−1π4−9π(9+π2)×14+7=1−9π4(9+π2)+7∫a(π8)=8−9π4(9+π2)
85695 The sum of the absolute maximum and minimum values of the function f(x)=∣x2−5x +6∣−3x+2 in the interval [−1,3] is equal to
(B) : Given,f(x)=|x2−5x+6|−3x+2f(x)=x2−8x+8;x∈[−1,2]and, f(x)=−x2+2x−4;x∈[2,3)∴fmax=f(−1)=17fmin=f(3)=−7Since, f(x) is decreasing function in [−1,3]So, fmax+fmin=17−7=10
85696 The maximum value of 3cosx+4sinx+5 is
(D) : Maximum value of 3cosx+4sinx+5We know that,−a2+b2≤acosθ+bsinθ≤a2+b2−32+42≤3cosx+4sinx≤32+425−25≤3cosx+4sinx+5≤25+50≤3cosx+4sinx+5≤5+50≤3cosx+4sinx+5≤10The maximum value of3cosx+4sinx+5=10
85697 If the maximum value of y=acosx−13cos3x occurs when x=π6, then the value of ais
(B) : Given,y=acosx−13cos3xThen, dydx=−asinx+13sin3x×3dydx=−asinx+sin3xFor maxim of minima, dydx=0−asinx=−sin3x⇒a=sin3xsinxSo, when x=π6, then the value of a isa=sin3×π6sinπ6=sinπ2sinπ6=sin90∘sin30∘⇒a=11/2⇒a=2