Maxima and Minima
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85694 If the maximum value of a, for which the function \(f_{\mathrm{a}}(\mathrm{x})=\tan ^{-1} 2 \mathrm{x}-3 \mathbf{a x}+7\) is nondecreasing in \(\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)\), is \(\overline{\mathrm{a}}\), then \(f_{\overline{\mathrm{a}}}\left(\frac{\pi}{8}\right)\) is equal to

1 \(8-\frac{9 \pi}{4\left(9+\pi^{2}\right)}\)
2 \(8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}\)
3 \(8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)\)
4 \(8-\frac{\pi}{4}\)
Application of Derivatives

85695 The sum of the absolute maximum and minimum values of the function \(f(x)=\mid x^{2}-5 x\) \(+6 \mid-3 x+2\) in the interval \([-1,3]\) is equal to

1 12
2 10
3 24
4 13
Application of Derivatives

85696 The maximum value of \(3 \cos x+4 \sin x+5\) is

1 5
2 6
3 7
4 none of these
Application of Derivatives

85697 If the maximum value of \(y=a \cos x-\)
\(\frac{1}{3} \cos 3 x\) occurs when \(x=\frac{\pi}{6}\), then the value of a
is

1 -2
2 2
3 \(\frac{2}{\sqrt{3}}\)
4 \(-\frac{2}{\sqrt{3}}\)
Application of Derivatives

85694 If the maximum value of a, for which the function \(f_{\mathrm{a}}(\mathrm{x})=\tan ^{-1} 2 \mathrm{x}-3 \mathbf{a x}+7\) is nondecreasing in \(\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)\), is \(\overline{\mathrm{a}}\), then \(f_{\overline{\mathrm{a}}}\left(\frac{\pi}{8}\right)\) is equal to

1 \(8-\frac{9 \pi}{4\left(9+\pi^{2}\right)}\)
2 \(8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}\)
3 \(8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)\)
4 \(8-\frac{\pi}{4}\)
Application of Derivatives

85695 The sum of the absolute maximum and minimum values of the function \(f(x)=\mid x^{2}-5 x\) \(+6 \mid-3 x+2\) in the interval \([-1,3]\) is equal to

1 12
2 10
3 24
4 13
Application of Derivatives

85696 The maximum value of \(3 \cos x+4 \sin x+5\) is

1 5
2 6
3 7
4 none of these
Application of Derivatives

85697 If the maximum value of \(y=a \cos x-\)
\(\frac{1}{3} \cos 3 x\) occurs when \(x=\frac{\pi}{6}\), then the value of a
is

1 -2
2 2
3 \(\frac{2}{\sqrt{3}}\)
4 \(-\frac{2}{\sqrt{3}}\)
Application of Derivatives

85694 If the maximum value of a, for which the function \(f_{\mathrm{a}}(\mathrm{x})=\tan ^{-1} 2 \mathrm{x}-3 \mathbf{a x}+7\) is nondecreasing in \(\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)\), is \(\overline{\mathrm{a}}\), then \(f_{\overline{\mathrm{a}}}\left(\frac{\pi}{8}\right)\) is equal to

1 \(8-\frac{9 \pi}{4\left(9+\pi^{2}\right)}\)
2 \(8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}\)
3 \(8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)\)
4 \(8-\frac{\pi}{4}\)
Application of Derivatives

85695 The sum of the absolute maximum and minimum values of the function \(f(x)=\mid x^{2}-5 x\) \(+6 \mid-3 x+2\) in the interval \([-1,3]\) is equal to

1 12
2 10
3 24
4 13
Application of Derivatives

85696 The maximum value of \(3 \cos x+4 \sin x+5\) is

1 5
2 6
3 7
4 none of these
Application of Derivatives

85697 If the maximum value of \(y=a \cos x-\)
\(\frac{1}{3} \cos 3 x\) occurs when \(x=\frac{\pi}{6}\), then the value of a
is

1 -2
2 2
3 \(\frac{2}{\sqrt{3}}\)
4 \(-\frac{2}{\sqrt{3}}\)
Application of Derivatives

85694 If the maximum value of a, for which the function \(f_{\mathrm{a}}(\mathrm{x})=\tan ^{-1} 2 \mathrm{x}-3 \mathbf{a x}+7\) is nondecreasing in \(\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)\), is \(\overline{\mathrm{a}}\), then \(f_{\overline{\mathrm{a}}}\left(\frac{\pi}{8}\right)\) is equal to

1 \(8-\frac{9 \pi}{4\left(9+\pi^{2}\right)}\)
2 \(8-\frac{4 \pi}{9\left(4+\pi^{2}\right)}\)
3 \(8\left(\frac{1+\pi^{2}}{9+\pi^{2}}\right)\)
4 \(8-\frac{\pi}{4}\)
Application of Derivatives

85695 The sum of the absolute maximum and minimum values of the function \(f(x)=\mid x^{2}-5 x\) \(+6 \mid-3 x+2\) in the interval \([-1,3]\) is equal to

1 12
2 10
3 24
4 13
Application of Derivatives

85696 The maximum value of \(3 \cos x+4 \sin x+5\) is

1 5
2 6
3 7
4 none of these
Application of Derivatives

85697 If the maximum value of \(y=a \cos x-\)
\(\frac{1}{3} \cos 3 x\) occurs when \(x=\frac{\pi}{6}\), then the value of a
is

1 -2
2 2
3 \(\frac{2}{\sqrt{3}}\)
4 \(-\frac{2}{\sqrt{3}}\)