Maxima and Minima
Application of Derivatives

85689 Consider the following statements:
1.The function attains local minimum value at
\(\mathrm{x}=\frac{7}{5}\)
2.\(\mathbf{x}=\mathbf{2}\) is the point of inflexion.
Which of the above statements is/are correct?

1 1 only
2 2 only
3 Both 1 and 2
4 Neither 1 nor 2
Application of Derivatives

85690 Let \(f(x)=\left\{\begin{array}{c}x^{3}-x^{2}+10 x-7, x \leq 1 \\ -2 x+\log _{2}\left(b^{2}-4\right), x>1\end{array}\right.\). Then the set of all values of \(b\), for which \(f(x)\) has maximum value at \(\mathrm{x}=1\), is:

1 \((-6,-2)\)
2 \((2,6)\)
3 \([-6,-2) \cup(2,6]\)
4 \([-\sqrt{6},-2) \cup(2, \sqrt{6}]\)
Application of Derivatives

85691 Let \(x=2\) be a local minima of the function \(f(x)\) \(=2 x^{4}-18 x^{2}+8 x+12, x \in(-4,4)\). If \(M\) is local maximum value of the function \(f\) in \((-4,4)\), then \(\mathbf{M}=\)

1 \(18 \sqrt{6}-\frac{33}{2}\)
2 \(12 \sqrt{6}-\frac{33}{2}\)
3 \(12 \sqrt{6}-\frac{31}{2}\)
4 \(18 \sqrt{6}-\frac{31}{2}\)
Application of Derivatives

85692 Let the function \(f(x)=2 x^{3}+(2 p-7) x^{2}+3(2 p\) -9) \(x-6\) have a maxima for some value of \(x\lt \) 0 and a minima for some value of \(x>0\). Then, the set of all values of \(p\) is

1 \(\left(\frac{9}{2}, \infty\right)\)
2 \(\left(0, \frac{9}{2}\right)\)
3 \(\left(-\frac{9}{2}, \frac{9}{2}\right)\)
4 \(\left(-\infty, \frac{9}{2}\right)\)
Application of Derivatives

85693 If the function \(f(x)=\frac{x^{3}}{3}+2 b x+\frac{a x^{2}}{2}\) and
\(g(x)=\frac{x^{3}}{3}+a x+b x^{2}, a \neq 2 b\) have
common extreme point, then \(a+2 b+7\) is equal to :

1 \(\frac{3}{2}\)
2 3
3 6
4 4
Application of Derivatives

85689 Consider the following statements:
1.The function attains local minimum value at
\(\mathrm{x}=\frac{7}{5}\)
2.\(\mathbf{x}=\mathbf{2}\) is the point of inflexion.
Which of the above statements is/are correct?

1 1 only
2 2 only
3 Both 1 and 2
4 Neither 1 nor 2
Application of Derivatives

85690 Let \(f(x)=\left\{\begin{array}{c}x^{3}-x^{2}+10 x-7, x \leq 1 \\ -2 x+\log _{2}\left(b^{2}-4\right), x>1\end{array}\right.\). Then the set of all values of \(b\), for which \(f(x)\) has maximum value at \(\mathrm{x}=1\), is:

1 \((-6,-2)\)
2 \((2,6)\)
3 \([-6,-2) \cup(2,6]\)
4 \([-\sqrt{6},-2) \cup(2, \sqrt{6}]\)
Application of Derivatives

85691 Let \(x=2\) be a local minima of the function \(f(x)\) \(=2 x^{4}-18 x^{2}+8 x+12, x \in(-4,4)\). If \(M\) is local maximum value of the function \(f\) in \((-4,4)\), then \(\mathbf{M}=\)

1 \(18 \sqrt{6}-\frac{33}{2}\)
2 \(12 \sqrt{6}-\frac{33}{2}\)
3 \(12 \sqrt{6}-\frac{31}{2}\)
4 \(18 \sqrt{6}-\frac{31}{2}\)
Application of Derivatives

85692 Let the function \(f(x)=2 x^{3}+(2 p-7) x^{2}+3(2 p\) -9) \(x-6\) have a maxima for some value of \(x\lt \) 0 and a minima for some value of \(x>0\). Then, the set of all values of \(p\) is

1 \(\left(\frac{9}{2}, \infty\right)\)
2 \(\left(0, \frac{9}{2}\right)\)
3 \(\left(-\frac{9}{2}, \frac{9}{2}\right)\)
4 \(\left(-\infty, \frac{9}{2}\right)\)
Application of Derivatives

85693 If the function \(f(x)=\frac{x^{3}}{3}+2 b x+\frac{a x^{2}}{2}\) and
\(g(x)=\frac{x^{3}}{3}+a x+b x^{2}, a \neq 2 b\) have
common extreme point, then \(a+2 b+7\) is equal to :

1 \(\frac{3}{2}\)
2 3
3 6
4 4
Application of Derivatives

85689 Consider the following statements:
1.The function attains local minimum value at
\(\mathrm{x}=\frac{7}{5}\)
2.\(\mathbf{x}=\mathbf{2}\) is the point of inflexion.
Which of the above statements is/are correct?

1 1 only
2 2 only
3 Both 1 and 2
4 Neither 1 nor 2
Application of Derivatives

85690 Let \(f(x)=\left\{\begin{array}{c}x^{3}-x^{2}+10 x-7, x \leq 1 \\ -2 x+\log _{2}\left(b^{2}-4\right), x>1\end{array}\right.\). Then the set of all values of \(b\), for which \(f(x)\) has maximum value at \(\mathrm{x}=1\), is:

1 \((-6,-2)\)
2 \((2,6)\)
3 \([-6,-2) \cup(2,6]\)
4 \([-\sqrt{6},-2) \cup(2, \sqrt{6}]\)
Application of Derivatives

85691 Let \(x=2\) be a local minima of the function \(f(x)\) \(=2 x^{4}-18 x^{2}+8 x+12, x \in(-4,4)\). If \(M\) is local maximum value of the function \(f\) in \((-4,4)\), then \(\mathbf{M}=\)

1 \(18 \sqrt{6}-\frac{33}{2}\)
2 \(12 \sqrt{6}-\frac{33}{2}\)
3 \(12 \sqrt{6}-\frac{31}{2}\)
4 \(18 \sqrt{6}-\frac{31}{2}\)
Application of Derivatives

85692 Let the function \(f(x)=2 x^{3}+(2 p-7) x^{2}+3(2 p\) -9) \(x-6\) have a maxima for some value of \(x\lt \) 0 and a minima for some value of \(x>0\). Then, the set of all values of \(p\) is

1 \(\left(\frac{9}{2}, \infty\right)\)
2 \(\left(0, \frac{9}{2}\right)\)
3 \(\left(-\frac{9}{2}, \frac{9}{2}\right)\)
4 \(\left(-\infty, \frac{9}{2}\right)\)
Application of Derivatives

85693 If the function \(f(x)=\frac{x^{3}}{3}+2 b x+\frac{a x^{2}}{2}\) and
\(g(x)=\frac{x^{3}}{3}+a x+b x^{2}, a \neq 2 b\) have
common extreme point, then \(a+2 b+7\) is equal to :

1 \(\frac{3}{2}\)
2 3
3 6
4 4
Application of Derivatives

85689 Consider the following statements:
1.The function attains local minimum value at
\(\mathrm{x}=\frac{7}{5}\)
2.\(\mathbf{x}=\mathbf{2}\) is the point of inflexion.
Which of the above statements is/are correct?

1 1 only
2 2 only
3 Both 1 and 2
4 Neither 1 nor 2
Application of Derivatives

85690 Let \(f(x)=\left\{\begin{array}{c}x^{3}-x^{2}+10 x-7, x \leq 1 \\ -2 x+\log _{2}\left(b^{2}-4\right), x>1\end{array}\right.\). Then the set of all values of \(b\), for which \(f(x)\) has maximum value at \(\mathrm{x}=1\), is:

1 \((-6,-2)\)
2 \((2,6)\)
3 \([-6,-2) \cup(2,6]\)
4 \([-\sqrt{6},-2) \cup(2, \sqrt{6}]\)
Application of Derivatives

85691 Let \(x=2\) be a local minima of the function \(f(x)\) \(=2 x^{4}-18 x^{2}+8 x+12, x \in(-4,4)\). If \(M\) is local maximum value of the function \(f\) in \((-4,4)\), then \(\mathbf{M}=\)

1 \(18 \sqrt{6}-\frac{33}{2}\)
2 \(12 \sqrt{6}-\frac{33}{2}\)
3 \(12 \sqrt{6}-\frac{31}{2}\)
4 \(18 \sqrt{6}-\frac{31}{2}\)
Application of Derivatives

85692 Let the function \(f(x)=2 x^{3}+(2 p-7) x^{2}+3(2 p\) -9) \(x-6\) have a maxima for some value of \(x\lt \) 0 and a minima for some value of \(x>0\). Then, the set of all values of \(p\) is

1 \(\left(\frac{9}{2}, \infty\right)\)
2 \(\left(0, \frac{9}{2}\right)\)
3 \(\left(-\frac{9}{2}, \frac{9}{2}\right)\)
4 \(\left(-\infty, \frac{9}{2}\right)\)
Application of Derivatives

85693 If the function \(f(x)=\frac{x^{3}}{3}+2 b x+\frac{a x^{2}}{2}\) and
\(g(x)=\frac{x^{3}}{3}+a x+b x^{2}, a \neq 2 b\) have
common extreme point, then \(a+2 b+7\) is equal to :

1 \(\frac{3}{2}\)
2 3
3 6
4 4
Application of Derivatives

85689 Consider the following statements:
1.The function attains local minimum value at
\(\mathrm{x}=\frac{7}{5}\)
2.\(\mathbf{x}=\mathbf{2}\) is the point of inflexion.
Which of the above statements is/are correct?

1 1 only
2 2 only
3 Both 1 and 2
4 Neither 1 nor 2
Application of Derivatives

85690 Let \(f(x)=\left\{\begin{array}{c}x^{3}-x^{2}+10 x-7, x \leq 1 \\ -2 x+\log _{2}\left(b^{2}-4\right), x>1\end{array}\right.\). Then the set of all values of \(b\), for which \(f(x)\) has maximum value at \(\mathrm{x}=1\), is:

1 \((-6,-2)\)
2 \((2,6)\)
3 \([-6,-2) \cup(2,6]\)
4 \([-\sqrt{6},-2) \cup(2, \sqrt{6}]\)
Application of Derivatives

85691 Let \(x=2\) be a local minima of the function \(f(x)\) \(=2 x^{4}-18 x^{2}+8 x+12, x \in(-4,4)\). If \(M\) is local maximum value of the function \(f\) in \((-4,4)\), then \(\mathbf{M}=\)

1 \(18 \sqrt{6}-\frac{33}{2}\)
2 \(12 \sqrt{6}-\frac{33}{2}\)
3 \(12 \sqrt{6}-\frac{31}{2}\)
4 \(18 \sqrt{6}-\frac{31}{2}\)
Application of Derivatives

85692 Let the function \(f(x)=2 x^{3}+(2 p-7) x^{2}+3(2 p\) -9) \(x-6\) have a maxima for some value of \(x\lt \) 0 and a minima for some value of \(x>0\). Then, the set of all values of \(p\) is

1 \(\left(\frac{9}{2}, \infty\right)\)
2 \(\left(0, \frac{9}{2}\right)\)
3 \(\left(-\frac{9}{2}, \frac{9}{2}\right)\)
4 \(\left(-\infty, \frac{9}{2}\right)\)
Application of Derivatives

85693 If the function \(f(x)=\frac{x^{3}}{3}+2 b x+\frac{a x^{2}}{2}\) and
\(g(x)=\frac{x^{3}}{3}+a x+b x^{2}, a \neq 2 b\) have
common extreme point, then \(a+2 b+7\) is equal to :

1 \(\frac{3}{2}\)
2 3
3 6
4 4