Maxima and Minima
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85685 If the total maximum value of the function \(f(x)\)
\(=\left(\frac{\sqrt{3 \mathrm{e}}}{2 \sin \mathrm{x}}\right)^{\sin ^{2} \mathrm{x}}, \mathrm{x} \in\left(0, \frac{\pi}{2}\right)\), is \(\frac{\mathrm{k}}{\mathrm{e}}, \quad\) then
\(\left(\frac{\mathbf{k}}{\mathbf{e}}\right)^{8}+\frac{\mathbf{k}^{8}}{\mathbf{e}^{5}}+\mathbf{k}^{8}\) is equal to

1 \(\mathrm{e}^{5}+\mathrm{e}^{6}+\mathrm{e}^{11}\)
2 \(\mathrm{e}^{3}+\mathrm{e}^{5}+\mathrm{e}^{11}\)
3 \(\mathrm{e}^{3}+\mathrm{e}^{6}+\mathrm{e}^{11}\)
4 \(\mathrm{e}^{3}+\mathrm{e}^{6}+\mathrm{e}^{10}\)
Application of Derivatives

85686 A wire of length \(22 \mathrm{~m}\) is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is :

1 \(\frac{22}{9+4 \sqrt{3}}\)
2 \(\frac{66}{9+4 \sqrt{3}}\)
3 \(\frac{22}{4+9 \sqrt{3}}\)
4 \(\frac{66}{4+9 \sqrt{3}}\)
Application of Derivatives

85687 The function attains local maximum at

1 \(x=0\)
2 \(x=1\)
3 \(x=2\)
4 \(x=4\)
Application of Derivatives

85688 If \(f(x)=a \ln |x|+b x^{2}+x\) has its extreme values at \(x=-1\) and \(x=2\), then what is the value of ' \(a\) '

1 1
2 2
3 -1
4 -2
Application of Derivatives

85685 If the total maximum value of the function \(f(x)\)
\(=\left(\frac{\sqrt{3 \mathrm{e}}}{2 \sin \mathrm{x}}\right)^{\sin ^{2} \mathrm{x}}, \mathrm{x} \in\left(0, \frac{\pi}{2}\right)\), is \(\frac{\mathrm{k}}{\mathrm{e}}, \quad\) then
\(\left(\frac{\mathbf{k}}{\mathbf{e}}\right)^{8}+\frac{\mathbf{k}^{8}}{\mathbf{e}^{5}}+\mathbf{k}^{8}\) is equal to

1 \(\mathrm{e}^{5}+\mathrm{e}^{6}+\mathrm{e}^{11}\)
2 \(\mathrm{e}^{3}+\mathrm{e}^{5}+\mathrm{e}^{11}\)
3 \(\mathrm{e}^{3}+\mathrm{e}^{6}+\mathrm{e}^{11}\)
4 \(\mathrm{e}^{3}+\mathrm{e}^{6}+\mathrm{e}^{10}\)
Application of Derivatives

85686 A wire of length \(22 \mathrm{~m}\) is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is :

1 \(\frac{22}{9+4 \sqrt{3}}\)
2 \(\frac{66}{9+4 \sqrt{3}}\)
3 \(\frac{22}{4+9 \sqrt{3}}\)
4 \(\frac{66}{4+9 \sqrt{3}}\)
Application of Derivatives

85687 The function attains local maximum at

1 \(x=0\)
2 \(x=1\)
3 \(x=2\)
4 \(x=4\)
Application of Derivatives

85688 If \(f(x)=a \ln |x|+b x^{2}+x\) has its extreme values at \(x=-1\) and \(x=2\), then what is the value of ' \(a\) '

1 1
2 2
3 -1
4 -2
Application of Derivatives

85685 If the total maximum value of the function \(f(x)\)
\(=\left(\frac{\sqrt{3 \mathrm{e}}}{2 \sin \mathrm{x}}\right)^{\sin ^{2} \mathrm{x}}, \mathrm{x} \in\left(0, \frac{\pi}{2}\right)\), is \(\frac{\mathrm{k}}{\mathrm{e}}, \quad\) then
\(\left(\frac{\mathbf{k}}{\mathbf{e}}\right)^{8}+\frac{\mathbf{k}^{8}}{\mathbf{e}^{5}}+\mathbf{k}^{8}\) is equal to

1 \(\mathrm{e}^{5}+\mathrm{e}^{6}+\mathrm{e}^{11}\)
2 \(\mathrm{e}^{3}+\mathrm{e}^{5}+\mathrm{e}^{11}\)
3 \(\mathrm{e}^{3}+\mathrm{e}^{6}+\mathrm{e}^{11}\)
4 \(\mathrm{e}^{3}+\mathrm{e}^{6}+\mathrm{e}^{10}\)
Application of Derivatives

85686 A wire of length \(22 \mathrm{~m}\) is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is :

1 \(\frac{22}{9+4 \sqrt{3}}\)
2 \(\frac{66}{9+4 \sqrt{3}}\)
3 \(\frac{22}{4+9 \sqrt{3}}\)
4 \(\frac{66}{4+9 \sqrt{3}}\)
Application of Derivatives

85687 The function attains local maximum at

1 \(x=0\)
2 \(x=1\)
3 \(x=2\)
4 \(x=4\)
Application of Derivatives

85688 If \(f(x)=a \ln |x|+b x^{2}+x\) has its extreme values at \(x=-1\) and \(x=2\), then what is the value of ' \(a\) '

1 1
2 2
3 -1
4 -2
Application of Derivatives

85685 If the total maximum value of the function \(f(x)\)
\(=\left(\frac{\sqrt{3 \mathrm{e}}}{2 \sin \mathrm{x}}\right)^{\sin ^{2} \mathrm{x}}, \mathrm{x} \in\left(0, \frac{\pi}{2}\right)\), is \(\frac{\mathrm{k}}{\mathrm{e}}, \quad\) then
\(\left(\frac{\mathbf{k}}{\mathbf{e}}\right)^{8}+\frac{\mathbf{k}^{8}}{\mathbf{e}^{5}}+\mathbf{k}^{8}\) is equal to

1 \(\mathrm{e}^{5}+\mathrm{e}^{6}+\mathrm{e}^{11}\)
2 \(\mathrm{e}^{3}+\mathrm{e}^{5}+\mathrm{e}^{11}\)
3 \(\mathrm{e}^{3}+\mathrm{e}^{6}+\mathrm{e}^{11}\)
4 \(\mathrm{e}^{3}+\mathrm{e}^{6}+\mathrm{e}^{10}\)
Application of Derivatives

85686 A wire of length \(22 \mathrm{~m}\) is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is :

1 \(\frac{22}{9+4 \sqrt{3}}\)
2 \(\frac{66}{9+4 \sqrt{3}}\)
3 \(\frac{22}{4+9 \sqrt{3}}\)
4 \(\frac{66}{4+9 \sqrt{3}}\)
Application of Derivatives

85687 The function attains local maximum at

1 \(x=0\)
2 \(x=1\)
3 \(x=2\)
4 \(x=4\)
Application of Derivatives

85688 If \(f(x)=a \ln |x|+b x^{2}+x\) has its extreme values at \(x=-1\) and \(x=2\), then what is the value of ' \(a\) '

1 1
2 2
3 -1
4 -2