Increasing and Decreasing Functions
Application of Derivatives

85293 The function \(f(x)=\sin x-k x-c\), where \(k\) and \(c\) are constants, decreases always when

1 \(\mathrm{k}>1\)
2 \(\mathrm{k} \geq 1\)
3 \(\mathrm{k}\lt 1\)
4 \(\mathrm{k} \leq 1\)
Application of Derivatives

85294 Which of the following inequality is true for \(\mathbf{x}>\mathbf{0}\) ?

1 \(\log (1+\mathrm{x})\lt \frac{\mathrm{x}}{1+\mathrm{x}}\lt \mathrm{x}\)
2 \(\frac{\mathrm{x}}{1+\mathrm{x}}\lt \mathrm{x}\lt \log (1+\mathrm{x})\)
3 \(x\lt \log (1+x)\lt \frac{x}{1+x}\)
4 \(\frac{\mathrm{x}}{1+\mathrm{x}}\lt \log (1+\mathrm{x})\lt \mathrm{x}\)
Application of Derivatives

85295 The function \(y=\sqrt{2 x-x^{2}}\)

1 increase in \((0,1)\) but decreases in \((1,2)\)
2 decreases in \((0,2)\)
3 increases in \((1,2)\) but decreases in \((0,1)\)
4 increases in \((0,2)\)
Application of Derivatives

85296 For which interval, the given function \(f(x)=-\) \(2 x^{3}-9 x^{2}-12 x+1\) is decreasing?

1 \((-2, \infty)\)
2 \((-2,-1)\)
3 \((-\infty,-1)\)
4 \((-\infty,-2)\) and \((-1, \infty)\)
Application of Derivatives

85293 The function \(f(x)=\sin x-k x-c\), where \(k\) and \(c\) are constants, decreases always when

1 \(\mathrm{k}>1\)
2 \(\mathrm{k} \geq 1\)
3 \(\mathrm{k}\lt 1\)
4 \(\mathrm{k} \leq 1\)
Application of Derivatives

85294 Which of the following inequality is true for \(\mathbf{x}>\mathbf{0}\) ?

1 \(\log (1+\mathrm{x})\lt \frac{\mathrm{x}}{1+\mathrm{x}}\lt \mathrm{x}\)
2 \(\frac{\mathrm{x}}{1+\mathrm{x}}\lt \mathrm{x}\lt \log (1+\mathrm{x})\)
3 \(x\lt \log (1+x)\lt \frac{x}{1+x}\)
4 \(\frac{\mathrm{x}}{1+\mathrm{x}}\lt \log (1+\mathrm{x})\lt \mathrm{x}\)
Application of Derivatives

85295 The function \(y=\sqrt{2 x-x^{2}}\)

1 increase in \((0,1)\) but decreases in \((1,2)\)
2 decreases in \((0,2)\)
3 increases in \((1,2)\) but decreases in \((0,1)\)
4 increases in \((0,2)\)
Application of Derivatives

85296 For which interval, the given function \(f(x)=-\) \(2 x^{3}-9 x^{2}-12 x+1\) is decreasing?

1 \((-2, \infty)\)
2 \((-2,-1)\)
3 \((-\infty,-1)\)
4 \((-\infty,-2)\) and \((-1, \infty)\)
Application of Derivatives

85293 The function \(f(x)=\sin x-k x-c\), where \(k\) and \(c\) are constants, decreases always when

1 \(\mathrm{k}>1\)
2 \(\mathrm{k} \geq 1\)
3 \(\mathrm{k}\lt 1\)
4 \(\mathrm{k} \leq 1\)
Application of Derivatives

85294 Which of the following inequality is true for \(\mathbf{x}>\mathbf{0}\) ?

1 \(\log (1+\mathrm{x})\lt \frac{\mathrm{x}}{1+\mathrm{x}}\lt \mathrm{x}\)
2 \(\frac{\mathrm{x}}{1+\mathrm{x}}\lt \mathrm{x}\lt \log (1+\mathrm{x})\)
3 \(x\lt \log (1+x)\lt \frac{x}{1+x}\)
4 \(\frac{\mathrm{x}}{1+\mathrm{x}}\lt \log (1+\mathrm{x})\lt \mathrm{x}\)
Application of Derivatives

85295 The function \(y=\sqrt{2 x-x^{2}}\)

1 increase in \((0,1)\) but decreases in \((1,2)\)
2 decreases in \((0,2)\)
3 increases in \((1,2)\) but decreases in \((0,1)\)
4 increases in \((0,2)\)
Application of Derivatives

85296 For which interval, the given function \(f(x)=-\) \(2 x^{3}-9 x^{2}-12 x+1\) is decreasing?

1 \((-2, \infty)\)
2 \((-2,-1)\)
3 \((-\infty,-1)\)
4 \((-\infty,-2)\) and \((-1, \infty)\)
Application of Derivatives

85293 The function \(f(x)=\sin x-k x-c\), where \(k\) and \(c\) are constants, decreases always when

1 \(\mathrm{k}>1\)
2 \(\mathrm{k} \geq 1\)
3 \(\mathrm{k}\lt 1\)
4 \(\mathrm{k} \leq 1\)
Application of Derivatives

85294 Which of the following inequality is true for \(\mathbf{x}>\mathbf{0}\) ?

1 \(\log (1+\mathrm{x})\lt \frac{\mathrm{x}}{1+\mathrm{x}}\lt \mathrm{x}\)
2 \(\frac{\mathrm{x}}{1+\mathrm{x}}\lt \mathrm{x}\lt \log (1+\mathrm{x})\)
3 \(x\lt \log (1+x)\lt \frac{x}{1+x}\)
4 \(\frac{\mathrm{x}}{1+\mathrm{x}}\lt \log (1+\mathrm{x})\lt \mathrm{x}\)
Application of Derivatives

85295 The function \(y=\sqrt{2 x-x^{2}}\)

1 increase in \((0,1)\) but decreases in \((1,2)\)
2 decreases in \((0,2)\)
3 increases in \((1,2)\) but decreases in \((0,1)\)
4 increases in \((0,2)\)
Application of Derivatives

85296 For which interval, the given function \(f(x)=-\) \(2 x^{3}-9 x^{2}-12 x+1\) is decreasing?

1 \((-2, \infty)\)
2 \((-2,-1)\)
3 \((-\infty,-1)\)
4 \((-\infty,-2)\) and \((-1, \infty)\)