Increasing and Decreasing Functions
Application of Derivatives

85289 The set of all values of a for which the function \(f(x)=\left(a^{2}-3 a+2\right)\left(\cos ^{2} x / 4-\sin ^{2} x / 4\right)+(a-1) x+\sin 1\) does not possess critical points is

1 \([1, \infty)\)
2 \((0,1) \cup(1,4)\)
3 \((-2,4)\)
4 \((1,3) \cup(3,5)\)
Application of Derivatives

85290 If \(f(x)=x^{x}\), then \(f(x)\) is increasing in interval :

1 \([0, \mathrm{e}]\)
2 \(\left[0, \frac{1}{\mathrm{e}}\right]\)
3 \([0,1]\)
4 None of these
Application of Derivatives

85291 If \(f(x)=x^{3}+b x^{2}+c x+d\) and \(0\lt b^{2}\lt c\), then in \((-\infty, \infty)\),

1 \(f(x)\) is a strictly increasing function
2 \(f(x)\) has local maxima
3 \(f(x)\) is a strictly decreasing function
4 \(f(x)\) is bounded
Application of Derivatives

85292 The interval in which the function \(f(x)=\frac{4 x^{2}+1}{x}\) is decreasing is :

1 \(\left(-\frac{1}{2}, \frac{1}{2}\right)\)
2 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
3 \((-1,1)\)
4 \([-1,1]\)
Application of Derivatives

85289 The set of all values of a for which the function \(f(x)=\left(a^{2}-3 a+2\right)\left(\cos ^{2} x / 4-\sin ^{2} x / 4\right)+(a-1) x+\sin 1\) does not possess critical points is

1 \([1, \infty)\)
2 \((0,1) \cup(1,4)\)
3 \((-2,4)\)
4 \((1,3) \cup(3,5)\)
Application of Derivatives

85290 If \(f(x)=x^{x}\), then \(f(x)\) is increasing in interval :

1 \([0, \mathrm{e}]\)
2 \(\left[0, \frac{1}{\mathrm{e}}\right]\)
3 \([0,1]\)
4 None of these
Application of Derivatives

85291 If \(f(x)=x^{3}+b x^{2}+c x+d\) and \(0\lt b^{2}\lt c\), then in \((-\infty, \infty)\),

1 \(f(x)\) is a strictly increasing function
2 \(f(x)\) has local maxima
3 \(f(x)\) is a strictly decreasing function
4 \(f(x)\) is bounded
Application of Derivatives

85292 The interval in which the function \(f(x)=\frac{4 x^{2}+1}{x}\) is decreasing is :

1 \(\left(-\frac{1}{2}, \frac{1}{2}\right)\)
2 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
3 \((-1,1)\)
4 \([-1,1]\)
Application of Derivatives

85289 The set of all values of a for which the function \(f(x)=\left(a^{2}-3 a+2\right)\left(\cos ^{2} x / 4-\sin ^{2} x / 4\right)+(a-1) x+\sin 1\) does not possess critical points is

1 \([1, \infty)\)
2 \((0,1) \cup(1,4)\)
3 \((-2,4)\)
4 \((1,3) \cup(3,5)\)
Application of Derivatives

85290 If \(f(x)=x^{x}\), then \(f(x)\) is increasing in interval :

1 \([0, \mathrm{e}]\)
2 \(\left[0, \frac{1}{\mathrm{e}}\right]\)
3 \([0,1]\)
4 None of these
Application of Derivatives

85291 If \(f(x)=x^{3}+b x^{2}+c x+d\) and \(0\lt b^{2}\lt c\), then in \((-\infty, \infty)\),

1 \(f(x)\) is a strictly increasing function
2 \(f(x)\) has local maxima
3 \(f(x)\) is a strictly decreasing function
4 \(f(x)\) is bounded
Application of Derivatives

85292 The interval in which the function \(f(x)=\frac{4 x^{2}+1}{x}\) is decreasing is :

1 \(\left(-\frac{1}{2}, \frac{1}{2}\right)\)
2 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
3 \((-1,1)\)
4 \([-1,1]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of Derivatives

85289 The set of all values of a for which the function \(f(x)=\left(a^{2}-3 a+2\right)\left(\cos ^{2} x / 4-\sin ^{2} x / 4\right)+(a-1) x+\sin 1\) does not possess critical points is

1 \([1, \infty)\)
2 \((0,1) \cup(1,4)\)
3 \((-2,4)\)
4 \((1,3) \cup(3,5)\)
Application of Derivatives

85290 If \(f(x)=x^{x}\), then \(f(x)\) is increasing in interval :

1 \([0, \mathrm{e}]\)
2 \(\left[0, \frac{1}{\mathrm{e}}\right]\)
3 \([0,1]\)
4 None of these
Application of Derivatives

85291 If \(f(x)=x^{3}+b x^{2}+c x+d\) and \(0\lt b^{2}\lt c\), then in \((-\infty, \infty)\),

1 \(f(x)\) is a strictly increasing function
2 \(f(x)\) has local maxima
3 \(f(x)\) is a strictly decreasing function
4 \(f(x)\) is bounded
Application of Derivatives

85292 The interval in which the function \(f(x)=\frac{4 x^{2}+1}{x}\) is decreasing is :

1 \(\left(-\frac{1}{2}, \frac{1}{2}\right)\)
2 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
3 \((-1,1)\)
4 \([-1,1]\)