Increasing and Decreasing Functions
Application of Derivatives

85283 If \(f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12\), then \(f(x)\) is

1 increasing in \((-\infty,-2)\) and in \((0,1)\)
2 increasing in \((-2,0)\) and in \((1, \infty)\)
3 decreasing in \((-2,0)\) and in \((0,1)\)
4 decreasing in \((-\infty,-2)\) and in \((1, \infty)\)
Application of Derivatives

85284 The function \(f(x)=\tan x-4 x\) is strictly decreasing on

1 \(\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)\)
2 \(\left(\frac{\pi}{3}, \frac{\pi}{2}\right)\)
3 \(\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)\)
4 \(\left(\frac{\pi}{2}, \pi\right)\)
Application of Derivatives

85285 If \(f(x)=\left(\frac{a^{2}-1}{a^{2}+1}\right) x^{3}-3 x+5\) is a decreasing function of \(x\) in \(R\) then the set of possible values of a (independent of \(x\) ) is

1 \((1, \infty)\)
2 \((-\infty,-1)\)
3 \([-1,1]\)
4 None of these
Application of Derivatives

85286 The function \(f(x)=(x(x-2))^{2}\) is increasing in the set

1 \((-\infty, 0) \cup(2, \infty)\)
2 \((-\infty, 1)\)
3 \((0,1) \cup(2, \infty)\)
4 \((1,2)\)
Application of Derivatives

85287 The interval in which the function \(2 x^{3}+15\) increases less rapidly than the function \(9 x^{2}-\) \(12 x\), is

1 \((-\infty, 1)\)
2 \((1,2)\)
3 \((2, \infty)\)
4 None of these
Application of Derivatives

85283 If \(f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12\), then \(f(x)\) is

1 increasing in \((-\infty,-2)\) and in \((0,1)\)
2 increasing in \((-2,0)\) and in \((1, \infty)\)
3 decreasing in \((-2,0)\) and in \((0,1)\)
4 decreasing in \((-\infty,-2)\) and in \((1, \infty)\)
Application of Derivatives

85284 The function \(f(x)=\tan x-4 x\) is strictly decreasing on

1 \(\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)\)
2 \(\left(\frac{\pi}{3}, \frac{\pi}{2}\right)\)
3 \(\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)\)
4 \(\left(\frac{\pi}{2}, \pi\right)\)
Application of Derivatives

85285 If \(f(x)=\left(\frac{a^{2}-1}{a^{2}+1}\right) x^{3}-3 x+5\) is a decreasing function of \(x\) in \(R\) then the set of possible values of a (independent of \(x\) ) is

1 \((1, \infty)\)
2 \((-\infty,-1)\)
3 \([-1,1]\)
4 None of these
Application of Derivatives

85286 The function \(f(x)=(x(x-2))^{2}\) is increasing in the set

1 \((-\infty, 0) \cup(2, \infty)\)
2 \((-\infty, 1)\)
3 \((0,1) \cup(2, \infty)\)
4 \((1,2)\)
Application of Derivatives

85287 The interval in which the function \(2 x^{3}+15\) increases less rapidly than the function \(9 x^{2}-\) \(12 x\), is

1 \((-\infty, 1)\)
2 \((1,2)\)
3 \((2, \infty)\)
4 None of these
Application of Derivatives

85283 If \(f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12\), then \(f(x)\) is

1 increasing in \((-\infty,-2)\) and in \((0,1)\)
2 increasing in \((-2,0)\) and in \((1, \infty)\)
3 decreasing in \((-2,0)\) and in \((0,1)\)
4 decreasing in \((-\infty,-2)\) and in \((1, \infty)\)
Application of Derivatives

85284 The function \(f(x)=\tan x-4 x\) is strictly decreasing on

1 \(\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)\)
2 \(\left(\frac{\pi}{3}, \frac{\pi}{2}\right)\)
3 \(\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)\)
4 \(\left(\frac{\pi}{2}, \pi\right)\)
Application of Derivatives

85285 If \(f(x)=\left(\frac{a^{2}-1}{a^{2}+1}\right) x^{3}-3 x+5\) is a decreasing function of \(x\) in \(R\) then the set of possible values of a (independent of \(x\) ) is

1 \((1, \infty)\)
2 \((-\infty,-1)\)
3 \([-1,1]\)
4 None of these
Application of Derivatives

85286 The function \(f(x)=(x(x-2))^{2}\) is increasing in the set

1 \((-\infty, 0) \cup(2, \infty)\)
2 \((-\infty, 1)\)
3 \((0,1) \cup(2, \infty)\)
4 \((1,2)\)
Application of Derivatives

85287 The interval in which the function \(2 x^{3}+15\) increases less rapidly than the function \(9 x^{2}-\) \(12 x\), is

1 \((-\infty, 1)\)
2 \((1,2)\)
3 \((2, \infty)\)
4 None of these
Application of Derivatives

85283 If \(f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12\), then \(f(x)\) is

1 increasing in \((-\infty,-2)\) and in \((0,1)\)
2 increasing in \((-2,0)\) and in \((1, \infty)\)
3 decreasing in \((-2,0)\) and in \((0,1)\)
4 decreasing in \((-\infty,-2)\) and in \((1, \infty)\)
Application of Derivatives

85284 The function \(f(x)=\tan x-4 x\) is strictly decreasing on

1 \(\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)\)
2 \(\left(\frac{\pi}{3}, \frac{\pi}{2}\right)\)
3 \(\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)\)
4 \(\left(\frac{\pi}{2}, \pi\right)\)
Application of Derivatives

85285 If \(f(x)=\left(\frac{a^{2}-1}{a^{2}+1}\right) x^{3}-3 x+5\) is a decreasing function of \(x\) in \(R\) then the set of possible values of a (independent of \(x\) ) is

1 \((1, \infty)\)
2 \((-\infty,-1)\)
3 \([-1,1]\)
4 None of these
Application of Derivatives

85286 The function \(f(x)=(x(x-2))^{2}\) is increasing in the set

1 \((-\infty, 0) \cup(2, \infty)\)
2 \((-\infty, 1)\)
3 \((0,1) \cup(2, \infty)\)
4 \((1,2)\)
Application of Derivatives

85287 The interval in which the function \(2 x^{3}+15\) increases less rapidly than the function \(9 x^{2}-\) \(12 x\), is

1 \((-\infty, 1)\)
2 \((1,2)\)
3 \((2, \infty)\)
4 None of these
Application of Derivatives

85283 If \(f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12\), then \(f(x)\) is

1 increasing in \((-\infty,-2)\) and in \((0,1)\)
2 increasing in \((-2,0)\) and in \((1, \infty)\)
3 decreasing in \((-2,0)\) and in \((0,1)\)
4 decreasing in \((-\infty,-2)\) and in \((1, \infty)\)
Application of Derivatives

85284 The function \(f(x)=\tan x-4 x\) is strictly decreasing on

1 \(\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)\)
2 \(\left(\frac{\pi}{3}, \frac{\pi}{2}\right)\)
3 \(\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)\)
4 \(\left(\frac{\pi}{2}, \pi\right)\)
Application of Derivatives

85285 If \(f(x)=\left(\frac{a^{2}-1}{a^{2}+1}\right) x^{3}-3 x+5\) is a decreasing function of \(x\) in \(R\) then the set of possible values of a (independent of \(x\) ) is

1 \((1, \infty)\)
2 \((-\infty,-1)\)
3 \([-1,1]\)
4 None of these
Application of Derivatives

85286 The function \(f(x)=(x(x-2))^{2}\) is increasing in the set

1 \((-\infty, 0) \cup(2, \infty)\)
2 \((-\infty, 1)\)
3 \((0,1) \cup(2, \infty)\)
4 \((1,2)\)
Application of Derivatives

85287 The interval in which the function \(2 x^{3}+15\) increases less rapidly than the function \(9 x^{2}-\) \(12 x\), is

1 \((-\infty, 1)\)
2 \((1,2)\)
3 \((2, \infty)\)
4 None of these