Increasing and Decreasing Functions
Application of Derivatives

85278 If \(f(x)=\frac{x}{x^{2}+1}\) is increasing function then the value of \(x\) lies in

1 \(\mathrm{R}\)
2 \((-\infty,-1)\)
3 \((1, \infty)\)
4 \((-1,1)\)
Application of Derivatives

85279 Divide 20 into two parts such that the product of one part and the cube of the other is maximum. The two parts are

1 \((12,8)\)
2 \((15,5)\)
3 \((10,10)\)
4 \((2,18)\)
Application of Derivatives

85280 The function \(f(x)=\cot ^{-1} x+x\) increases in the interval

1 \((1, \infty)\)
2 \((-1, \infty)\)
3 \((0, \infty)\)
4 \((-\infty, \infty)\)
Application of Derivatives

85282 The function \(f(x)=x^{3}-6 x^{2}+12 x-16, x \in \mathrm{R}\) is

1 increasing for all \(x \in \mathrm{R}\)
2 decreasing for all \(x \in \mathrm{R}\)
3 increasing for all \(x \in(-1, \infty)\)
4 decreasing for all \(\mathrm{x} \in(2, \infty)\)
Application of Derivatives

85278 If \(f(x)=\frac{x}{x^{2}+1}\) is increasing function then the value of \(x\) lies in

1 \(\mathrm{R}\)
2 \((-\infty,-1)\)
3 \((1, \infty)\)
4 \((-1,1)\)
Application of Derivatives

85279 Divide 20 into two parts such that the product of one part and the cube of the other is maximum. The two parts are

1 \((12,8)\)
2 \((15,5)\)
3 \((10,10)\)
4 \((2,18)\)
Application of Derivatives

85280 The function \(f(x)=\cot ^{-1} x+x\) increases in the interval

1 \((1, \infty)\)
2 \((-1, \infty)\)
3 \((0, \infty)\)
4 \((-\infty, \infty)\)
Application of Derivatives

85282 The function \(f(x)=x^{3}-6 x^{2}+12 x-16, x \in \mathrm{R}\) is

1 increasing for all \(x \in \mathrm{R}\)
2 decreasing for all \(x \in \mathrm{R}\)
3 increasing for all \(x \in(-1, \infty)\)
4 decreasing for all \(\mathrm{x} \in(2, \infty)\)
Application of Derivatives

85278 If \(f(x)=\frac{x}{x^{2}+1}\) is increasing function then the value of \(x\) lies in

1 \(\mathrm{R}\)
2 \((-\infty,-1)\)
3 \((1, \infty)\)
4 \((-1,1)\)
Application of Derivatives

85279 Divide 20 into two parts such that the product of one part and the cube of the other is maximum. The two parts are

1 \((12,8)\)
2 \((15,5)\)
3 \((10,10)\)
4 \((2,18)\)
Application of Derivatives

85280 The function \(f(x)=\cot ^{-1} x+x\) increases in the interval

1 \((1, \infty)\)
2 \((-1, \infty)\)
3 \((0, \infty)\)
4 \((-\infty, \infty)\)
Application of Derivatives

85282 The function \(f(x)=x^{3}-6 x^{2}+12 x-16, x \in \mathrm{R}\) is

1 increasing for all \(x \in \mathrm{R}\)
2 decreasing for all \(x \in \mathrm{R}\)
3 increasing for all \(x \in(-1, \infty)\)
4 decreasing for all \(\mathrm{x} \in(2, \infty)\)
Application of Derivatives

85278 If \(f(x)=\frac{x}{x^{2}+1}\) is increasing function then the value of \(x\) lies in

1 \(\mathrm{R}\)
2 \((-\infty,-1)\)
3 \((1, \infty)\)
4 \((-1,1)\)
Application of Derivatives

85279 Divide 20 into two parts such that the product of one part and the cube of the other is maximum. The two parts are

1 \((12,8)\)
2 \((15,5)\)
3 \((10,10)\)
4 \((2,18)\)
Application of Derivatives

85280 The function \(f(x)=\cot ^{-1} x+x\) increases in the interval

1 \((1, \infty)\)
2 \((-1, \infty)\)
3 \((0, \infty)\)
4 \((-\infty, \infty)\)
Application of Derivatives

85282 The function \(f(x)=x^{3}-6 x^{2}+12 x-16, x \in \mathrm{R}\) is

1 increasing for all \(x \in \mathrm{R}\)
2 decreasing for all \(x \in \mathrm{R}\)
3 increasing for all \(x \in(-1, \infty)\)
4 decreasing for all \(\mathrm{x} \in(2, \infty)\)