Nature and Number of Roots
Complex Numbers and Quadratic Equation

118260 The number of real roots of equation \(\log _e x+\) \(\mathrm{ex}=0\) is

1 0
2 1
3 2
4 3
Complex Numbers and Quadratic Equation

118261 The quadratic expression
\((2 x+1)^2-p x+q \neq 0\) for real \(x\), if

1 \(\mathrm{p}^2-16 \mathrm{p}-8 \mathrm{q}\lt 0\)
2 \(p^2+8 p-16 q\lt 0\)
3 \(\mathrm{p}^2-8 \mathrm{p}-16 \mathrm{q}\lt 0\)
4 \(\mathrm{p}^2-16 \mathrm{p}+8 \mathrm{q}\lt 0\)
Complex Numbers and Quadratic Equation

118262 If \(p, q\) are odd integer, then the roots of the equation \(2 \mathbf{p x}^2+(2 p+q) x+q=0\) are

1 rational
2 irrational
3 non-real
4 equal
Complex Numbers and Quadratic Equation

118263 Let \(\phi(x)=\frac{x}{\left(x^2+1\right)(x+1)}\). If \(a, b\) and \(c\) are the roots of the equation \(x^3-3 x+\lambda=0,(\lambda \neq 0)\). Then, \(\phi(\mathbf{a}) \phi(\mathrm{b}) \phi(\mathrm{c})=\)

1 \(\lambda\)
2 \(\frac{-\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
3 \(\frac{\lambda}{(\lambda+2)}\)
4 \(\frac{\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
Complex Numbers and Quadratic Equation

118260 The number of real roots of equation \(\log _e x+\) \(\mathrm{ex}=0\) is

1 0
2 1
3 2
4 3
Complex Numbers and Quadratic Equation

118261 The quadratic expression
\((2 x+1)^2-p x+q \neq 0\) for real \(x\), if

1 \(\mathrm{p}^2-16 \mathrm{p}-8 \mathrm{q}\lt 0\)
2 \(p^2+8 p-16 q\lt 0\)
3 \(\mathrm{p}^2-8 \mathrm{p}-16 \mathrm{q}\lt 0\)
4 \(\mathrm{p}^2-16 \mathrm{p}+8 \mathrm{q}\lt 0\)
Complex Numbers and Quadratic Equation

118262 If \(p, q\) are odd integer, then the roots of the equation \(2 \mathbf{p x}^2+(2 p+q) x+q=0\) are

1 rational
2 irrational
3 non-real
4 equal
Complex Numbers and Quadratic Equation

118263 Let \(\phi(x)=\frac{x}{\left(x^2+1\right)(x+1)}\). If \(a, b\) and \(c\) are the roots of the equation \(x^3-3 x+\lambda=0,(\lambda \neq 0)\). Then, \(\phi(\mathbf{a}) \phi(\mathrm{b}) \phi(\mathrm{c})=\)

1 \(\lambda\)
2 \(\frac{-\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
3 \(\frac{\lambda}{(\lambda+2)}\)
4 \(\frac{\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
Complex Numbers and Quadratic Equation

118260 The number of real roots of equation \(\log _e x+\) \(\mathrm{ex}=0\) is

1 0
2 1
3 2
4 3
Complex Numbers and Quadratic Equation

118261 The quadratic expression
\((2 x+1)^2-p x+q \neq 0\) for real \(x\), if

1 \(\mathrm{p}^2-16 \mathrm{p}-8 \mathrm{q}\lt 0\)
2 \(p^2+8 p-16 q\lt 0\)
3 \(\mathrm{p}^2-8 \mathrm{p}-16 \mathrm{q}\lt 0\)
4 \(\mathrm{p}^2-16 \mathrm{p}+8 \mathrm{q}\lt 0\)
Complex Numbers and Quadratic Equation

118262 If \(p, q\) are odd integer, then the roots of the equation \(2 \mathbf{p x}^2+(2 p+q) x+q=0\) are

1 rational
2 irrational
3 non-real
4 equal
Complex Numbers and Quadratic Equation

118263 Let \(\phi(x)=\frac{x}{\left(x^2+1\right)(x+1)}\). If \(a, b\) and \(c\) are the roots of the equation \(x^3-3 x+\lambda=0,(\lambda \neq 0)\). Then, \(\phi(\mathbf{a}) \phi(\mathrm{b}) \phi(\mathrm{c})=\)

1 \(\lambda\)
2 \(\frac{-\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
3 \(\frac{\lambda}{(\lambda+2)}\)
4 \(\frac{\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118260 The number of real roots of equation \(\log _e x+\) \(\mathrm{ex}=0\) is

1 0
2 1
3 2
4 3
Complex Numbers and Quadratic Equation

118261 The quadratic expression
\((2 x+1)^2-p x+q \neq 0\) for real \(x\), if

1 \(\mathrm{p}^2-16 \mathrm{p}-8 \mathrm{q}\lt 0\)
2 \(p^2+8 p-16 q\lt 0\)
3 \(\mathrm{p}^2-8 \mathrm{p}-16 \mathrm{q}\lt 0\)
4 \(\mathrm{p}^2-16 \mathrm{p}+8 \mathrm{q}\lt 0\)
Complex Numbers and Quadratic Equation

118262 If \(p, q\) are odd integer, then the roots of the equation \(2 \mathbf{p x}^2+(2 p+q) x+q=0\) are

1 rational
2 irrational
3 non-real
4 equal
Complex Numbers and Quadratic Equation

118263 Let \(\phi(x)=\frac{x}{\left(x^2+1\right)(x+1)}\). If \(a, b\) and \(c\) are the roots of the equation \(x^3-3 x+\lambda=0,(\lambda \neq 0)\). Then, \(\phi(\mathbf{a}) \phi(\mathrm{b}) \phi(\mathrm{c})=\)

1 \(\lambda\)
2 \(\frac{-\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
3 \(\frac{\lambda}{(\lambda+2)}\)
4 \(\frac{\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)