Nature and Number of Roots
Complex Numbers and Quadratic Equation

118252 The number of positive real roots of the equation \(3^{\mathrm{x+1}}+3^{-\mathrm{x}+\mathrm{f}}=\mathbf{1 0}\) is

1 3
2 2
3 1
4 Infinitely many
Complex Numbers and Quadratic Equation

118253 If \(\alpha, \beta\) be the roots of \(x^2-a(x-1)+b=0\), then the value of \(\frac{1}{\alpha^2-a \alpha}+\frac{1}{\beta^2-a \beta}+\frac{2}{a+b}\)

1 \(\frac{4}{a+b}\)
2 \(\frac{1}{a+b}\)
3 0
4 -1
Complex Numbers and Quadratic Equation

118254 If the ratio of the roots of the equation \(p x^2+q x\) \(+r=0\) is \(a: b\), then \(\frac{a b}{(a+b)^2}=\)

1 \(\frac{\mathrm{p}^2}{\mathrm{qr}}\)
2 \(\frac{\mathrm{pr}}{\mathrm{q}^2}\)
3 \(\frac{\mathrm{q}^2}{\mathrm{pr}}\)
4 \(\frac{\mathrm{pq}}{\mathrm{r}^2}\)
Complex Numbers and Quadratic Equation

118258 If \((\alpha+\sqrt{\beta})\) and \((\alpha-\sqrt{\beta})\) are the roots of the equation \(x^2+p x+q=0\), where \(\alpha, \beta\), p and \(q\) are real, then the roots of the equation \(\left(p^2-4 q\right)\left(p^2 x^2+4 p x\right)-16 q=0\) are

1 \(\left(\frac{1}{\alpha}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\alpha}-\frac{1}{\sqrt{\beta}}\right)\)
2 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\beta}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\beta}\right)\)
3 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\sqrt{\beta}}\right)\)
4 \((\sqrt{\alpha}+\sqrt{\beta}) \operatorname{and}(\sqrt{\alpha}-\sqrt{\beta})\)
Complex Numbers and Quadratic Equation

118259 The greatest real root of the equation \(6 x^4-35 x^3+62 x^2-35 x+6=0\) is

1 2
2 \(\frac{5}{2}\)
3 3
4 \(\frac{7}{2}\)
Complex Numbers and Quadratic Equation

118252 The number of positive real roots of the equation \(3^{\mathrm{x+1}}+3^{-\mathrm{x}+\mathrm{f}}=\mathbf{1 0}\) is

1 3
2 2
3 1
4 Infinitely many
Complex Numbers and Quadratic Equation

118253 If \(\alpha, \beta\) be the roots of \(x^2-a(x-1)+b=0\), then the value of \(\frac{1}{\alpha^2-a \alpha}+\frac{1}{\beta^2-a \beta}+\frac{2}{a+b}\)

1 \(\frac{4}{a+b}\)
2 \(\frac{1}{a+b}\)
3 0
4 -1
Complex Numbers and Quadratic Equation

118254 If the ratio of the roots of the equation \(p x^2+q x\) \(+r=0\) is \(a: b\), then \(\frac{a b}{(a+b)^2}=\)

1 \(\frac{\mathrm{p}^2}{\mathrm{qr}}\)
2 \(\frac{\mathrm{pr}}{\mathrm{q}^2}\)
3 \(\frac{\mathrm{q}^2}{\mathrm{pr}}\)
4 \(\frac{\mathrm{pq}}{\mathrm{r}^2}\)
Complex Numbers and Quadratic Equation

118258 If \((\alpha+\sqrt{\beta})\) and \((\alpha-\sqrt{\beta})\) are the roots of the equation \(x^2+p x+q=0\), where \(\alpha, \beta\), p and \(q\) are real, then the roots of the equation \(\left(p^2-4 q\right)\left(p^2 x^2+4 p x\right)-16 q=0\) are

1 \(\left(\frac{1}{\alpha}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\alpha}-\frac{1}{\sqrt{\beta}}\right)\)
2 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\beta}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\beta}\right)\)
3 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\sqrt{\beta}}\right)\)
4 \((\sqrt{\alpha}+\sqrt{\beta}) \operatorname{and}(\sqrt{\alpha}-\sqrt{\beta})\)
Complex Numbers and Quadratic Equation

118259 The greatest real root of the equation \(6 x^4-35 x^3+62 x^2-35 x+6=0\) is

1 2
2 \(\frac{5}{2}\)
3 3
4 \(\frac{7}{2}\)
Complex Numbers and Quadratic Equation

118252 The number of positive real roots of the equation \(3^{\mathrm{x+1}}+3^{-\mathrm{x}+\mathrm{f}}=\mathbf{1 0}\) is

1 3
2 2
3 1
4 Infinitely many
Complex Numbers and Quadratic Equation

118253 If \(\alpha, \beta\) be the roots of \(x^2-a(x-1)+b=0\), then the value of \(\frac{1}{\alpha^2-a \alpha}+\frac{1}{\beta^2-a \beta}+\frac{2}{a+b}\)

1 \(\frac{4}{a+b}\)
2 \(\frac{1}{a+b}\)
3 0
4 -1
Complex Numbers and Quadratic Equation

118254 If the ratio of the roots of the equation \(p x^2+q x\) \(+r=0\) is \(a: b\), then \(\frac{a b}{(a+b)^2}=\)

1 \(\frac{\mathrm{p}^2}{\mathrm{qr}}\)
2 \(\frac{\mathrm{pr}}{\mathrm{q}^2}\)
3 \(\frac{\mathrm{q}^2}{\mathrm{pr}}\)
4 \(\frac{\mathrm{pq}}{\mathrm{r}^2}\)
Complex Numbers and Quadratic Equation

118258 If \((\alpha+\sqrt{\beta})\) and \((\alpha-\sqrt{\beta})\) are the roots of the equation \(x^2+p x+q=0\), where \(\alpha, \beta\), p and \(q\) are real, then the roots of the equation \(\left(p^2-4 q\right)\left(p^2 x^2+4 p x\right)-16 q=0\) are

1 \(\left(\frac{1}{\alpha}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\alpha}-\frac{1}{\sqrt{\beta}}\right)\)
2 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\beta}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\beta}\right)\)
3 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\sqrt{\beta}}\right)\)
4 \((\sqrt{\alpha}+\sqrt{\beta}) \operatorname{and}(\sqrt{\alpha}-\sqrt{\beta})\)
Complex Numbers and Quadratic Equation

118259 The greatest real root of the equation \(6 x^4-35 x^3+62 x^2-35 x+6=0\) is

1 2
2 \(\frac{5}{2}\)
3 3
4 \(\frac{7}{2}\)
Complex Numbers and Quadratic Equation

118252 The number of positive real roots of the equation \(3^{\mathrm{x+1}}+3^{-\mathrm{x}+\mathrm{f}}=\mathbf{1 0}\) is

1 3
2 2
3 1
4 Infinitely many
Complex Numbers and Quadratic Equation

118253 If \(\alpha, \beta\) be the roots of \(x^2-a(x-1)+b=0\), then the value of \(\frac{1}{\alpha^2-a \alpha}+\frac{1}{\beta^2-a \beta}+\frac{2}{a+b}\)

1 \(\frac{4}{a+b}\)
2 \(\frac{1}{a+b}\)
3 0
4 -1
Complex Numbers and Quadratic Equation

118254 If the ratio of the roots of the equation \(p x^2+q x\) \(+r=0\) is \(a: b\), then \(\frac{a b}{(a+b)^2}=\)

1 \(\frac{\mathrm{p}^2}{\mathrm{qr}}\)
2 \(\frac{\mathrm{pr}}{\mathrm{q}^2}\)
3 \(\frac{\mathrm{q}^2}{\mathrm{pr}}\)
4 \(\frac{\mathrm{pq}}{\mathrm{r}^2}\)
Complex Numbers and Quadratic Equation

118258 If \((\alpha+\sqrt{\beta})\) and \((\alpha-\sqrt{\beta})\) are the roots of the equation \(x^2+p x+q=0\), where \(\alpha, \beta\), p and \(q\) are real, then the roots of the equation \(\left(p^2-4 q\right)\left(p^2 x^2+4 p x\right)-16 q=0\) are

1 \(\left(\frac{1}{\alpha}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\alpha}-\frac{1}{\sqrt{\beta}}\right)\)
2 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\beta}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\beta}\right)\)
3 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\sqrt{\beta}}\right)\)
4 \((\sqrt{\alpha}+\sqrt{\beta}) \operatorname{and}(\sqrt{\alpha}-\sqrt{\beta})\)
Complex Numbers and Quadratic Equation

118259 The greatest real root of the equation \(6 x^4-35 x^3+62 x^2-35 x+6=0\) is

1 2
2 \(\frac{5}{2}\)
3 3
4 \(\frac{7}{2}\)
Complex Numbers and Quadratic Equation

118252 The number of positive real roots of the equation \(3^{\mathrm{x+1}}+3^{-\mathrm{x}+\mathrm{f}}=\mathbf{1 0}\) is

1 3
2 2
3 1
4 Infinitely many
Complex Numbers and Quadratic Equation

118253 If \(\alpha, \beta\) be the roots of \(x^2-a(x-1)+b=0\), then the value of \(\frac{1}{\alpha^2-a \alpha}+\frac{1}{\beta^2-a \beta}+\frac{2}{a+b}\)

1 \(\frac{4}{a+b}\)
2 \(\frac{1}{a+b}\)
3 0
4 -1
Complex Numbers and Quadratic Equation

118254 If the ratio of the roots of the equation \(p x^2+q x\) \(+r=0\) is \(a: b\), then \(\frac{a b}{(a+b)^2}=\)

1 \(\frac{\mathrm{p}^2}{\mathrm{qr}}\)
2 \(\frac{\mathrm{pr}}{\mathrm{q}^2}\)
3 \(\frac{\mathrm{q}^2}{\mathrm{pr}}\)
4 \(\frac{\mathrm{pq}}{\mathrm{r}^2}\)
Complex Numbers and Quadratic Equation

118258 If \((\alpha+\sqrt{\beta})\) and \((\alpha-\sqrt{\beta})\) are the roots of the equation \(x^2+p x+q=0\), where \(\alpha, \beta\), p and \(q\) are real, then the roots of the equation \(\left(p^2-4 q\right)\left(p^2 x^2+4 p x\right)-16 q=0\) are

1 \(\left(\frac{1}{\alpha}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\alpha}-\frac{1}{\sqrt{\beta}}\right)\)
2 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\beta}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\beta}\right)\)
3 \(\left(\frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}\right)\) and \(\left(\frac{1}{\sqrt{\alpha}}-\frac{1}{\sqrt{\beta}}\right)\)
4 \((\sqrt{\alpha}+\sqrt{\beta}) \operatorname{and}(\sqrt{\alpha}-\sqrt{\beta})\)
Complex Numbers and Quadratic Equation

118259 The greatest real root of the equation \(6 x^4-35 x^3+62 x^2-35 x+6=0\) is

1 2
2 \(\frac{5}{2}\)
3 3
4 \(\frac{7}{2}\)