De Moivre's Theorem
Complex Numbers and Quadratic Equation

118010 If \(x_k=\cos \left(\frac{\pi}{2^k}\right)+i \sin \left(\frac{\pi}{2^k}\right) ; Q_n=x_1 x_3 \ldots . x_{2 n-1}\), then \(\lim _{n \rightarrow \infty} Q_n\) equals

1 \(-\mathrm{i}\)
2 \(\mathrm{i}\)
3 \(\frac{1+\mathrm{i} \sqrt{3}}{2}\)
4 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
Complex Numbers and Quadratic Equation

118011 If \(x_k=\cos \left(\frac{\pi}{2^k}\right)+i \sin \left(\frac{\pi}{2^k}\right) ; Q_n=x_1 x_3 \ldots . x_{2 n-1}\), then \(\lim _{n \rightarrow \infty} Q_n\) equals

1 \(-\mathrm{i}\)
2 \(\mathrm{i}\)
3 \(\frac{1+\mathrm{i} \sqrt{3}}{2}\)
4 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
Complex Numbers and Quadratic Equation

118012 If \(x_n=\cos \frac{\pi}{2^n}+i \sin \frac{\pi}{2^n}\), then \(\prod_{n=0}^{\infty} x_n\) is equal to

1 -1
2 1
3 \(\frac{1}{\sqrt{2}}\)
4 \(\frac{\mathrm{i}}{\sqrt{2}}\)
Complex Numbers and Quadratic Equation

118013 If, \(\theta=\frac{\pi}{6}\) then the \(10^{\text {th }}\) term of \(1+(\cos \theta+i \sin\)
\(\theta)+(\cos \theta+i \sin \theta)^2+(\cos \theta+i \sin \theta)^3+\ldots \ldots . .\). is equal to

1 \(\mathrm{i}\)
2 -1
3 1
4 \(-\mathrm{i}\)
Complex Numbers and Quadratic Equation

118010 If \(x_k=\cos \left(\frac{\pi}{2^k}\right)+i \sin \left(\frac{\pi}{2^k}\right) ; Q_n=x_1 x_3 \ldots . x_{2 n-1}\), then \(\lim _{n \rightarrow \infty} Q_n\) equals

1 \(-\mathrm{i}\)
2 \(\mathrm{i}\)
3 \(\frac{1+\mathrm{i} \sqrt{3}}{2}\)
4 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
Complex Numbers and Quadratic Equation

118011 If \(x_k=\cos \left(\frac{\pi}{2^k}\right)+i \sin \left(\frac{\pi}{2^k}\right) ; Q_n=x_1 x_3 \ldots . x_{2 n-1}\), then \(\lim _{n \rightarrow \infty} Q_n\) equals

1 \(-\mathrm{i}\)
2 \(\mathrm{i}\)
3 \(\frac{1+\mathrm{i} \sqrt{3}}{2}\)
4 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
Complex Numbers and Quadratic Equation

118012 If \(x_n=\cos \frac{\pi}{2^n}+i \sin \frac{\pi}{2^n}\), then \(\prod_{n=0}^{\infty} x_n\) is equal to

1 -1
2 1
3 \(\frac{1}{\sqrt{2}}\)
4 \(\frac{\mathrm{i}}{\sqrt{2}}\)
Complex Numbers and Quadratic Equation

118013 If, \(\theta=\frac{\pi}{6}\) then the \(10^{\text {th }}\) term of \(1+(\cos \theta+i \sin\)
\(\theta)+(\cos \theta+i \sin \theta)^2+(\cos \theta+i \sin \theta)^3+\ldots \ldots . .\). is equal to

1 \(\mathrm{i}\)
2 -1
3 1
4 \(-\mathrm{i}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118010 If \(x_k=\cos \left(\frac{\pi}{2^k}\right)+i \sin \left(\frac{\pi}{2^k}\right) ; Q_n=x_1 x_3 \ldots . x_{2 n-1}\), then \(\lim _{n \rightarrow \infty} Q_n\) equals

1 \(-\mathrm{i}\)
2 \(\mathrm{i}\)
3 \(\frac{1+\mathrm{i} \sqrt{3}}{2}\)
4 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
Complex Numbers and Quadratic Equation

118011 If \(x_k=\cos \left(\frac{\pi}{2^k}\right)+i \sin \left(\frac{\pi}{2^k}\right) ; Q_n=x_1 x_3 \ldots . x_{2 n-1}\), then \(\lim _{n \rightarrow \infty} Q_n\) equals

1 \(-\mathrm{i}\)
2 \(\mathrm{i}\)
3 \(\frac{1+\mathrm{i} \sqrt{3}}{2}\)
4 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
Complex Numbers and Quadratic Equation

118012 If \(x_n=\cos \frac{\pi}{2^n}+i \sin \frac{\pi}{2^n}\), then \(\prod_{n=0}^{\infty} x_n\) is equal to

1 -1
2 1
3 \(\frac{1}{\sqrt{2}}\)
4 \(\frac{\mathrm{i}}{\sqrt{2}}\)
Complex Numbers and Quadratic Equation

118013 If, \(\theta=\frac{\pi}{6}\) then the \(10^{\text {th }}\) term of \(1+(\cos \theta+i \sin\)
\(\theta)+(\cos \theta+i \sin \theta)^2+(\cos \theta+i \sin \theta)^3+\ldots \ldots . .\). is equal to

1 \(\mathrm{i}\)
2 -1
3 1
4 \(-\mathrm{i}\)
Complex Numbers and Quadratic Equation

118010 If \(x_k=\cos \left(\frac{\pi}{2^k}\right)+i \sin \left(\frac{\pi}{2^k}\right) ; Q_n=x_1 x_3 \ldots . x_{2 n-1}\), then \(\lim _{n \rightarrow \infty} Q_n\) equals

1 \(-\mathrm{i}\)
2 \(\mathrm{i}\)
3 \(\frac{1+\mathrm{i} \sqrt{3}}{2}\)
4 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
Complex Numbers and Quadratic Equation

118011 If \(x_k=\cos \left(\frac{\pi}{2^k}\right)+i \sin \left(\frac{\pi}{2^k}\right) ; Q_n=x_1 x_3 \ldots . x_{2 n-1}\), then \(\lim _{n \rightarrow \infty} Q_n\) equals

1 \(-\mathrm{i}\)
2 \(\mathrm{i}\)
3 \(\frac{1+\mathrm{i} \sqrt{3}}{2}\)
4 \(\frac{-1+\mathrm{i} \sqrt{3}}{2}\)
Complex Numbers and Quadratic Equation

118012 If \(x_n=\cos \frac{\pi}{2^n}+i \sin \frac{\pi}{2^n}\), then \(\prod_{n=0}^{\infty} x_n\) is equal to

1 -1
2 1
3 \(\frac{1}{\sqrt{2}}\)
4 \(\frac{\mathrm{i}}{\sqrt{2}}\)
Complex Numbers and Quadratic Equation

118013 If, \(\theta=\frac{\pi}{6}\) then the \(10^{\text {th }}\) term of \(1+(\cos \theta+i \sin\)
\(\theta)+(\cos \theta+i \sin \theta)^2+(\cos \theta+i \sin \theta)^3+\ldots \ldots . .\). is equal to

1 \(\mathrm{i}\)
2 -1
3 1
4 \(-\mathrm{i}\)