De Moivre's Theorem
Complex Numbers and Quadratic Equation

118007 If \(\alpha, \beta\) are the roots of \(x^2-2 x+4=0\), for \(n \in\) \(\mathrm{N}\), what is the value of \boldsymbolαn+\boldsymbolβn=

1 2n+2cos(nπ3)
2 2n+1cos(nπ3)
3 2n+1cos(nπ6)
4 2n+2cos(nπ6)
Complex Numbers and Quadratic Equation

118008 The value of
1+k=014{cos(2k+1)15π+isin(2k+1)15π}i

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118009 The value of
1+k=014{cos(2k+1)15π+isin(2k+1)15π} is

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118017 If x+1x=2cosθ, then for any integer n, xn+1xn=

1 2cosnθ
2 2sinnθ
3 2icosnθ
4 2isinnθ
Complex Numbers and Quadratic Equation

118007 If α,β are the roots of x22x+4=0, for n N, what is the value of \boldsymbolαn+\boldsymbolβn=

1 2n+2cos(nπ3)
2 2n+1cos(nπ3)
3 2n+1cos(nπ6)
4 2n+2cos(nπ6)
Complex Numbers and Quadratic Equation

118008 The value of
1+k=014{cos(2k+1)15π+isin(2k+1)15π}i

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118009 The value of
1+k=014{cos(2k+1)15π+isin(2k+1)15π} is

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118017 If x+1x=2cosθ, then for any integer n, xn+1xn=

1 2cosnθ
2 2sinnθ
3 2icosnθ
4 2isinnθ
Complex Numbers and Quadratic Equation

118007 If α,β are the roots of x22x+4=0, for n N, what is the value of \boldsymbolαn+\boldsymbolβn=

1 2n+2cos(nπ3)
2 2n+1cos(nπ3)
3 2n+1cos(nπ6)
4 2n+2cos(nπ6)
Complex Numbers and Quadratic Equation

118008 The value of
1+k=014{cos(2k+1)15π+isin(2k+1)15π}i

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118009 The value of
1+k=014{cos(2k+1)15π+isin(2k+1)15π} is

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118017 If x+1x=2cosθ, then for any integer n, xn+1xn=

1 2cosnθ
2 2sinnθ
3 2icosnθ
4 2isinnθ
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118007 If α,β are the roots of x22x+4=0, for n N, what is the value of \boldsymbolαn+\boldsymbolβn=

1 2n+2cos(nπ3)
2 2n+1cos(nπ3)
3 2n+1cos(nπ6)
4 2n+2cos(nπ6)
Complex Numbers and Quadratic Equation

118008 The value of
1+k=014{cos(2k+1)15π+isin(2k+1)15π}i

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118009 The value of
1+k=014{cos(2k+1)15π+isin(2k+1)15π} is

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118017 If x+1x=2cosθ, then for any integer n, xn+1xn=

1 2cosnθ
2 2sinnθ
3 2icosnθ
4 2isinnθ