De Moivre's Theorem
Complex Numbers and Quadratic Equation

118001 If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals

1 \(\mathrm{n}\)
2 \(1 / \mathrm{n}\)
3 \(-1 / \mathrm{n}\)
4 0
Complex Numbers and Quadratic Equation

118003 Let \(\mathrm{n}\) be a positive integer such that \(\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}\), then

1 \(6 \leq \mathrm{n} \leq 8\)
2 \(4\lt \mathrm{n} \leq 8\)
3 \(4 \leq \mathrm{n}\lt 8\)
4 \(4\lt \) n \(\lt 8\)
Complex Numbers and Quadratic Equation

118004 \((-1+i \sqrt{3})^{60}=\)

1 \(2^{60}\)
2 \(2^{59}\)
3 \(2^{61}\)
4 \(2^{30}\)
Complex Numbers and Quadratic Equation

118005 \(\sum_{\mathrm{k}=1}^6\left(\sin \frac{2 \pi \mathrm{k}}{7}-i \cos \frac{2 \pi \mathrm{k}}{7}\right)=\)

1 -1
2 0
3 i
4 \(-\mathrm{i}\)
Complex Numbers and Quadratic Equation

118006 \(\frac{(1+i)^{2016}}{(1-i)^{2014}}=\)

1 \(-2 \mathrm{i}\)
2 \(2 \mathrm{i}\)
3 2
4 -2
Complex Numbers and Quadratic Equation

118001 If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals

1 \(\mathrm{n}\)
2 \(1 / \mathrm{n}\)
3 \(-1 / \mathrm{n}\)
4 0
Complex Numbers and Quadratic Equation

118003 Let \(\mathrm{n}\) be a positive integer such that \(\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}\), then

1 \(6 \leq \mathrm{n} \leq 8\)
2 \(4\lt \mathrm{n} \leq 8\)
3 \(4 \leq \mathrm{n}\lt 8\)
4 \(4\lt \) n \(\lt 8\)
Complex Numbers and Quadratic Equation

118004 \((-1+i \sqrt{3})^{60}=\)

1 \(2^{60}\)
2 \(2^{59}\)
3 \(2^{61}\)
4 \(2^{30}\)
Complex Numbers and Quadratic Equation

118005 \(\sum_{\mathrm{k}=1}^6\left(\sin \frac{2 \pi \mathrm{k}}{7}-i \cos \frac{2 \pi \mathrm{k}}{7}\right)=\)

1 -1
2 0
3 i
4 \(-\mathrm{i}\)
Complex Numbers and Quadratic Equation

118006 \(\frac{(1+i)^{2016}}{(1-i)^{2014}}=\)

1 \(-2 \mathrm{i}\)
2 \(2 \mathrm{i}\)
3 2
4 -2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118001 If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals

1 \(\mathrm{n}\)
2 \(1 / \mathrm{n}\)
3 \(-1 / \mathrm{n}\)
4 0
Complex Numbers and Quadratic Equation

118003 Let \(\mathrm{n}\) be a positive integer such that \(\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}\), then

1 \(6 \leq \mathrm{n} \leq 8\)
2 \(4\lt \mathrm{n} \leq 8\)
3 \(4 \leq \mathrm{n}\lt 8\)
4 \(4\lt \) n \(\lt 8\)
Complex Numbers and Quadratic Equation

118004 \((-1+i \sqrt{3})^{60}=\)

1 \(2^{60}\)
2 \(2^{59}\)
3 \(2^{61}\)
4 \(2^{30}\)
Complex Numbers and Quadratic Equation

118005 \(\sum_{\mathrm{k}=1}^6\left(\sin \frac{2 \pi \mathrm{k}}{7}-i \cos \frac{2 \pi \mathrm{k}}{7}\right)=\)

1 -1
2 0
3 i
4 \(-\mathrm{i}\)
Complex Numbers and Quadratic Equation

118006 \(\frac{(1+i)^{2016}}{(1-i)^{2014}}=\)

1 \(-2 \mathrm{i}\)
2 \(2 \mathrm{i}\)
3 2
4 -2
Complex Numbers and Quadratic Equation

118001 If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals

1 \(\mathrm{n}\)
2 \(1 / \mathrm{n}\)
3 \(-1 / \mathrm{n}\)
4 0
Complex Numbers and Quadratic Equation

118003 Let \(\mathrm{n}\) be a positive integer such that \(\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}\), then

1 \(6 \leq \mathrm{n} \leq 8\)
2 \(4\lt \mathrm{n} \leq 8\)
3 \(4 \leq \mathrm{n}\lt 8\)
4 \(4\lt \) n \(\lt 8\)
Complex Numbers and Quadratic Equation

118004 \((-1+i \sqrt{3})^{60}=\)

1 \(2^{60}\)
2 \(2^{59}\)
3 \(2^{61}\)
4 \(2^{30}\)
Complex Numbers and Quadratic Equation

118005 \(\sum_{\mathrm{k}=1}^6\left(\sin \frac{2 \pi \mathrm{k}}{7}-i \cos \frac{2 \pi \mathrm{k}}{7}\right)=\)

1 -1
2 0
3 i
4 \(-\mathrm{i}\)
Complex Numbers and Quadratic Equation

118006 \(\frac{(1+i)^{2016}}{(1-i)^{2014}}=\)

1 \(-2 \mathrm{i}\)
2 \(2 \mathrm{i}\)
3 2
4 -2
Complex Numbers and Quadratic Equation

118001 If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals

1 \(\mathrm{n}\)
2 \(1 / \mathrm{n}\)
3 \(-1 / \mathrm{n}\)
4 0
Complex Numbers and Quadratic Equation

118003 Let \(\mathrm{n}\) be a positive integer such that \(\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}\), then

1 \(6 \leq \mathrm{n} \leq 8\)
2 \(4\lt \mathrm{n} \leq 8\)
3 \(4 \leq \mathrm{n}\lt 8\)
4 \(4\lt \) n \(\lt 8\)
Complex Numbers and Quadratic Equation

118004 \((-1+i \sqrt{3})^{60}=\)

1 \(2^{60}\)
2 \(2^{59}\)
3 \(2^{61}\)
4 \(2^{30}\)
Complex Numbers and Quadratic Equation

118005 \(\sum_{\mathrm{k}=1}^6\left(\sin \frac{2 \pi \mathrm{k}}{7}-i \cos \frac{2 \pi \mathrm{k}}{7}\right)=\)

1 -1
2 0
3 i
4 \(-\mathrm{i}\)
Complex Numbers and Quadratic Equation

118006 \(\frac{(1+i)^{2016}}{(1-i)^{2014}}=\)

1 \(-2 \mathrm{i}\)
2 \(2 \mathrm{i}\)
3 2
4 -2