118001
If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals
118001
If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals
118001
If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals
118001
If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals
118001
If \(\mathrm{z}_{\mathrm{k}}=\cos \alpha_{\mathrm{k}}+i \quad \sin \alpha_{\mathrm{k}} \quad\) and \(\sum_{k=1}^n z_k=0\), then \(\sum_{k=1}^n z_k^{-1}\) equals