De Moivre's Theorem
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118007 If \(\alpha, \beta\) are the roots of \(x^2-2 x+4=0\), for \(n \in\) \(\mathrm{N}\), what is the value of \(\boldsymbol{\alpha}^{\mathrm{n}}+\boldsymbol{\beta}^{\mathrm{n}}=\)

1 \(2^{\mathrm{n}+2} \cos \left(\frac{\mathrm{n} \pi}{3}\right)\)
2 \(2^{\mathrm{n}+1} \cos \left(\frac{\mathrm{n} \pi}{3}\right)\)
3 \(2^{\mathrm{n}+1} \cos \left(\frac{\mathrm{n} \pi}{6}\right)\)
4 \(2^{\mathrm{n}+2} \cos \left(\frac{\mathrm{n} \pi}{6}\right)\)
Complex Numbers and Quadratic Equation

118008 The value of
\(1+\sum_{\mathrm{k}=0}^{14}\left\{\cos \frac{(2 \mathrm{k}+1)}{15} \pi+\mathrm{i} \sin \frac{(2 \mathrm{k}+1)}{15} \pi\right\} \mathrm{i}\)

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118009 The value of
\(1+\sum_{\mathrm{k}=0}^{14}\left\{\cos \frac{(2 \mathrm{k}+1)}{15} \pi+i \sin \frac{(2 \mathrm{k}+1)}{15} \pi\right\}\) is

1 0
2 -1
3 1
4 \(\mathrm{i}\)
Complex Numbers and Quadratic Equation

118017 If \(x+\frac{1}{x}=2 \cos \theta\), then for any integer \(n\), \(\mathrm{x}^{\mathrm{n}}+\frac{1}{\mathrm{x}^{\mathrm{n}}}=\)

1 \(2 \cos n \theta\)
2 \(2 \sin \mathrm{n} \theta\)
3 \(2 \mathrm{i} \cos \mathrm{n} \theta\)
4 \(2 \mathrm{i} \sin \mathrm{n} \theta\)
Complex Numbers and Quadratic Equation

118007 If \(\alpha, \beta\) are the roots of \(x^2-2 x+4=0\), for \(n \in\) \(\mathrm{N}\), what is the value of \(\boldsymbol{\alpha}^{\mathrm{n}}+\boldsymbol{\beta}^{\mathrm{n}}=\)

1 \(2^{\mathrm{n}+2} \cos \left(\frac{\mathrm{n} \pi}{3}\right)\)
2 \(2^{\mathrm{n}+1} \cos \left(\frac{\mathrm{n} \pi}{3}\right)\)
3 \(2^{\mathrm{n}+1} \cos \left(\frac{\mathrm{n} \pi}{6}\right)\)
4 \(2^{\mathrm{n}+2} \cos \left(\frac{\mathrm{n} \pi}{6}\right)\)
Complex Numbers and Quadratic Equation

118008 The value of
\(1+\sum_{\mathrm{k}=0}^{14}\left\{\cos \frac{(2 \mathrm{k}+1)}{15} \pi+\mathrm{i} \sin \frac{(2 \mathrm{k}+1)}{15} \pi\right\} \mathrm{i}\)

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118009 The value of
\(1+\sum_{\mathrm{k}=0}^{14}\left\{\cos \frac{(2 \mathrm{k}+1)}{15} \pi+i \sin \frac{(2 \mathrm{k}+1)}{15} \pi\right\}\) is

1 0
2 -1
3 1
4 \(\mathrm{i}\)
Complex Numbers and Quadratic Equation

118017 If \(x+\frac{1}{x}=2 \cos \theta\), then for any integer \(n\), \(\mathrm{x}^{\mathrm{n}}+\frac{1}{\mathrm{x}^{\mathrm{n}}}=\)

1 \(2 \cos n \theta\)
2 \(2 \sin \mathrm{n} \theta\)
3 \(2 \mathrm{i} \cos \mathrm{n} \theta\)
4 \(2 \mathrm{i} \sin \mathrm{n} \theta\)
Complex Numbers and Quadratic Equation

118007 If \(\alpha, \beta\) are the roots of \(x^2-2 x+4=0\), for \(n \in\) \(\mathrm{N}\), what is the value of \(\boldsymbol{\alpha}^{\mathrm{n}}+\boldsymbol{\beta}^{\mathrm{n}}=\)

1 \(2^{\mathrm{n}+2} \cos \left(\frac{\mathrm{n} \pi}{3}\right)\)
2 \(2^{\mathrm{n}+1} \cos \left(\frac{\mathrm{n} \pi}{3}\right)\)
3 \(2^{\mathrm{n}+1} \cos \left(\frac{\mathrm{n} \pi}{6}\right)\)
4 \(2^{\mathrm{n}+2} \cos \left(\frac{\mathrm{n} \pi}{6}\right)\)
Complex Numbers and Quadratic Equation

118008 The value of
\(1+\sum_{\mathrm{k}=0}^{14}\left\{\cos \frac{(2 \mathrm{k}+1)}{15} \pi+\mathrm{i} \sin \frac{(2 \mathrm{k}+1)}{15} \pi\right\} \mathrm{i}\)

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118009 The value of
\(1+\sum_{\mathrm{k}=0}^{14}\left\{\cos \frac{(2 \mathrm{k}+1)}{15} \pi+i \sin \frac{(2 \mathrm{k}+1)}{15} \pi\right\}\) is

1 0
2 -1
3 1
4 \(\mathrm{i}\)
Complex Numbers and Quadratic Equation

118017 If \(x+\frac{1}{x}=2 \cos \theta\), then for any integer \(n\), \(\mathrm{x}^{\mathrm{n}}+\frac{1}{\mathrm{x}^{\mathrm{n}}}=\)

1 \(2 \cos n \theta\)
2 \(2 \sin \mathrm{n} \theta\)
3 \(2 \mathrm{i} \cos \mathrm{n} \theta\)
4 \(2 \mathrm{i} \sin \mathrm{n} \theta\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118007 If \(\alpha, \beta\) are the roots of \(x^2-2 x+4=0\), for \(n \in\) \(\mathrm{N}\), what is the value of \(\boldsymbol{\alpha}^{\mathrm{n}}+\boldsymbol{\beta}^{\mathrm{n}}=\)

1 \(2^{\mathrm{n}+2} \cos \left(\frac{\mathrm{n} \pi}{3}\right)\)
2 \(2^{\mathrm{n}+1} \cos \left(\frac{\mathrm{n} \pi}{3}\right)\)
3 \(2^{\mathrm{n}+1} \cos \left(\frac{\mathrm{n} \pi}{6}\right)\)
4 \(2^{\mathrm{n}+2} \cos \left(\frac{\mathrm{n} \pi}{6}\right)\)
Complex Numbers and Quadratic Equation

118008 The value of
\(1+\sum_{\mathrm{k}=0}^{14}\left\{\cos \frac{(2 \mathrm{k}+1)}{15} \pi+\mathrm{i} \sin \frac{(2 \mathrm{k}+1)}{15} \pi\right\} \mathrm{i}\)

1 0
2 -1
3 1
4 i
Complex Numbers and Quadratic Equation

118009 The value of
\(1+\sum_{\mathrm{k}=0}^{14}\left\{\cos \frac{(2 \mathrm{k}+1)}{15} \pi+i \sin \frac{(2 \mathrm{k}+1)}{15} \pi\right\}\) is

1 0
2 -1
3 1
4 \(\mathrm{i}\)
Complex Numbers and Quadratic Equation

118017 If \(x+\frac{1}{x}=2 \cos \theta\), then for any integer \(n\), \(\mathrm{x}^{\mathrm{n}}+\frac{1}{\mathrm{x}^{\mathrm{n}}}=\)

1 \(2 \cos n \theta\)
2 \(2 \sin \mathrm{n} \theta\)
3 \(2 \mathrm{i} \cos \mathrm{n} \theta\)
4 \(2 \mathrm{i} \sin \mathrm{n} \theta\)