118002 Which of the following is a fourth root of 12+i32 ?
Exp: (A): We have,(12+i32)=cosπ3+isinπ3[∵cosθ+isinθ=eiθ→ DeMoivre theorem ]=eiπ/3Fourth root =(eiπ/3)1/4=eiπ/12=cosπ12+isinπ12=cosπ12
117989 The value of 1+∑k=014{cos(2k+1)π15+isin(2k+1)π15} is
C We have,1+∑k=014{cos(2k+1)π15+isin(2k+1)π15}=1+∑k=014ei(2k+1)π/15=1+eiπ/15+ei3π/15+……+ei29π/15=1+eiπ/15{1−(ei2π/15)151−ei2π/15}=1+eiπ/15{1−ei2π1−ei2π/15}(∵ei2π=1)=1+0=1
117990 If (32+i32)50=325(x+iy), where x and y are real, then the ordered pair (x,y) is given by
(B) Given, (32+i32)50=325(x+iy)(32+i32)50=(3)50(x+iy)(323+i323)50=x+iy(32+i12)50=x+iy(cosπ6+isinπ6)50=x+iycos50π6+isin50π6=x+iycos25π3+isin25π3=x+iycos(8π+π3)+isin(8π+π3)=x+iycosπ3+isin(π3)=x+iy12+i32=x+iyx=12,y=32
117991 The least positive integer n. for which (1+i)n(1−i)n−2 is positive is
D (1+i)n(1−i)n−2 is positive for what value of n(1+i1−i)n×(1−i)2=[(1+i)2(12−i2)]n×(1−i)2=(1−1+2i)n2n×(−2i)=−(2i)n+12n=2n+12n[−1(i)n+1]=−2(i)n+1=2For least positive integer, n+1=2n=1
117992 If x+iy=(−1+i3)2010, then x=
(A) Given, x+iy=(−1+i3)2010=[2(−1+i3)2]2010=22010[−1+i32]2010x+ iy =22010ω2010[∵ω=−1+i32]=22010×(ω3)670=22010×(1)670x+ iy =22010+i×0 So, =22010,y=0So, x=22010,y=0