De Moivre's Theorem
Complex Numbers and Quadratic Equation

118000 What is the value of
\(\left(\frac{i+\sqrt{3}}{-i+\sqrt{3}}\right)^{52722}+\left(\frac{i-\sqrt{3}}{i+\sqrt{3}}\right)^{40305} \text { where } i=\sqrt{-1} \text { ? }\)

1 \(\sqrt{2}\)
2 \(\sqrt{3}\)
3 2
4 3
Complex Numbers and Quadratic Equation

117993 If \(a=\cos 2 \alpha+i \sin 2 \alpha, b=\cos 2 \beta+i \sin 2 \beta\), \(c=\cos 2 \gamma+i \sin 2 \gamma\) and \(d=\cos 2 \delta+i \sin 2 \delta\), then
\(\sqrt{\text { abcd }}+\frac{1}{\sqrt{\text { abcd }}}=\)

1 \(\sqrt{2} \cos (\alpha+\beta+\gamma+\delta)\)
2 \(2 \cos (\alpha+\beta+\gamma+\delta)\)
3 \(\cos (\alpha+\beta+\gamma+\delta)\)
4 None of these
Complex Numbers and Quadratic Equation

117994 If \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta\), \(\mathbf{c}=\cos \gamma+i \sin \gamma\) and \(\frac{\mathbf{b}}{\mathbf{c}}+\frac{\mathbf{c}}{\mathbf{a}}+\frac{\mathbf{a}}{\mathrm{b}}=1\), then \(\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)\) is equal to

1 \(\frac{3}{2}\)
2 \(-\frac{3}{2}\)
3 0
4 1
Complex Numbers and Quadratic Equation

117995 One of the values of \(\left(\frac{1+i}{\sqrt{2}}\right)^{2 / 3}\) is

1 \(\frac{1}{2}(\sqrt{3}+\mathrm{i})\)
2 \(-\mathrm{i}\)
3 i
4 \(-\sqrt{3}+\mathrm{i}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

118000 What is the value of
\(\left(\frac{i+\sqrt{3}}{-i+\sqrt{3}}\right)^{52722}+\left(\frac{i-\sqrt{3}}{i+\sqrt{3}}\right)^{40305} \text { where } i=\sqrt{-1} \text { ? }\)

1 \(\sqrt{2}\)
2 \(\sqrt{3}\)
3 2
4 3
Complex Numbers and Quadratic Equation

117993 If \(a=\cos 2 \alpha+i \sin 2 \alpha, b=\cos 2 \beta+i \sin 2 \beta\), \(c=\cos 2 \gamma+i \sin 2 \gamma\) and \(d=\cos 2 \delta+i \sin 2 \delta\), then
\(\sqrt{\text { abcd }}+\frac{1}{\sqrt{\text { abcd }}}=\)

1 \(\sqrt{2} \cos (\alpha+\beta+\gamma+\delta)\)
2 \(2 \cos (\alpha+\beta+\gamma+\delta)\)
3 \(\cos (\alpha+\beta+\gamma+\delta)\)
4 None of these
Complex Numbers and Quadratic Equation

117994 If \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta\), \(\mathbf{c}=\cos \gamma+i \sin \gamma\) and \(\frac{\mathbf{b}}{\mathbf{c}}+\frac{\mathbf{c}}{\mathbf{a}}+\frac{\mathbf{a}}{\mathrm{b}}=1\), then \(\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)\) is equal to

1 \(\frac{3}{2}\)
2 \(-\frac{3}{2}\)
3 0
4 1
Complex Numbers and Quadratic Equation

117995 One of the values of \(\left(\frac{1+i}{\sqrt{2}}\right)^{2 / 3}\) is

1 \(\frac{1}{2}(\sqrt{3}+\mathrm{i})\)
2 \(-\mathrm{i}\)
3 i
4 \(-\sqrt{3}+\mathrm{i}\)
Complex Numbers and Quadratic Equation

118000 What is the value of
\(\left(\frac{i+\sqrt{3}}{-i+\sqrt{3}}\right)^{52722}+\left(\frac{i-\sqrt{3}}{i+\sqrt{3}}\right)^{40305} \text { where } i=\sqrt{-1} \text { ? }\)

1 \(\sqrt{2}\)
2 \(\sqrt{3}\)
3 2
4 3
Complex Numbers and Quadratic Equation

117993 If \(a=\cos 2 \alpha+i \sin 2 \alpha, b=\cos 2 \beta+i \sin 2 \beta\), \(c=\cos 2 \gamma+i \sin 2 \gamma\) and \(d=\cos 2 \delta+i \sin 2 \delta\), then
\(\sqrt{\text { abcd }}+\frac{1}{\sqrt{\text { abcd }}}=\)

1 \(\sqrt{2} \cos (\alpha+\beta+\gamma+\delta)\)
2 \(2 \cos (\alpha+\beta+\gamma+\delta)\)
3 \(\cos (\alpha+\beta+\gamma+\delta)\)
4 None of these
Complex Numbers and Quadratic Equation

117994 If \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta\), \(\mathbf{c}=\cos \gamma+i \sin \gamma\) and \(\frac{\mathbf{b}}{\mathbf{c}}+\frac{\mathbf{c}}{\mathbf{a}}+\frac{\mathbf{a}}{\mathrm{b}}=1\), then \(\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)\) is equal to

1 \(\frac{3}{2}\)
2 \(-\frac{3}{2}\)
3 0
4 1
Complex Numbers and Quadratic Equation

117995 One of the values of \(\left(\frac{1+i}{\sqrt{2}}\right)^{2 / 3}\) is

1 \(\frac{1}{2}(\sqrt{3}+\mathrm{i})\)
2 \(-\mathrm{i}\)
3 i
4 \(-\sqrt{3}+\mathrm{i}\)
Complex Numbers and Quadratic Equation

118000 What is the value of
\(\left(\frac{i+\sqrt{3}}{-i+\sqrt{3}}\right)^{52722}+\left(\frac{i-\sqrt{3}}{i+\sqrt{3}}\right)^{40305} \text { where } i=\sqrt{-1} \text { ? }\)

1 \(\sqrt{2}\)
2 \(\sqrt{3}\)
3 2
4 3
Complex Numbers and Quadratic Equation

117993 If \(a=\cos 2 \alpha+i \sin 2 \alpha, b=\cos 2 \beta+i \sin 2 \beta\), \(c=\cos 2 \gamma+i \sin 2 \gamma\) and \(d=\cos 2 \delta+i \sin 2 \delta\), then
\(\sqrt{\text { abcd }}+\frac{1}{\sqrt{\text { abcd }}}=\)

1 \(\sqrt{2} \cos (\alpha+\beta+\gamma+\delta)\)
2 \(2 \cos (\alpha+\beta+\gamma+\delta)\)
3 \(\cos (\alpha+\beta+\gamma+\delta)\)
4 None of these
Complex Numbers and Quadratic Equation

117994 If \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta\), \(\mathbf{c}=\cos \gamma+i \sin \gamma\) and \(\frac{\mathbf{b}}{\mathbf{c}}+\frac{\mathbf{c}}{\mathbf{a}}+\frac{\mathbf{a}}{\mathrm{b}}=1\), then \(\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)\) is equal to

1 \(\frac{3}{2}\)
2 \(-\frac{3}{2}\)
3 0
4 1
Complex Numbers and Quadratic Equation

117995 One of the values of \(\left(\frac{1+i}{\sqrt{2}}\right)^{2 / 3}\) is

1 \(\frac{1}{2}(\sqrt{3}+\mathrm{i})\)
2 \(-\mathrm{i}\)
3 i
4 \(-\sqrt{3}+\mathrm{i}\)