117994 If \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta\), \(\mathbf{c}=\cos \gamma+i \sin \gamma\) and \(\frac{\mathbf{b}}{\mathbf{c}}+\frac{\mathbf{c}}{\mathbf{a}}+\frac{\mathbf{a}}{\mathrm{b}}=1\), then \(\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)\) is equal to
117994 If \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta\), \(\mathbf{c}=\cos \gamma+i \sin \gamma\) and \(\frac{\mathbf{b}}{\mathbf{c}}+\frac{\mathbf{c}}{\mathbf{a}}+\frac{\mathbf{a}}{\mathrm{b}}=1\), then \(\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)\) is equal to
117994 If \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta\), \(\mathbf{c}=\cos \gamma+i \sin \gamma\) and \(\frac{\mathbf{b}}{\mathbf{c}}+\frac{\mathbf{c}}{\mathbf{a}}+\frac{\mathbf{a}}{\mathrm{b}}=1\), then \(\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)\) is equal to
117994 If \(a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta\), \(\mathbf{c}=\cos \gamma+i \sin \gamma\) and \(\frac{\mathbf{b}}{\mathbf{c}}+\frac{\mathbf{c}}{\mathbf{a}}+\frac{\mathbf{a}}{\mathrm{b}}=1\), then \(\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)\) is equal to