117985
If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is
1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Explanation:
D Four points A, B, C, D on a Circle are \((2,1),(4,3),(2,5),(0,3)\) Slope of \(A B=\frac{3-1}{4-2}=\frac{2}{2}=1\) Slope of \(\mathrm{BC}=\frac{5-3}{2-4}=-1\) \(\mathrm{ABC}\) is a right angle \(\Delta\) \(\therefore\) Centre of circle is mid-point of AC i.e. \(\left(\frac{2+2}{2}, \frac{1+5}{2}\right)=(2,3)\) \(\therefore\) Centre of circle is \((2+3 i)\)
TS EAMCET-14.09.2020
Complex Numbers and Quadratic Equation
117986
If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is
117985
If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is
1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Explanation:
D Four points A, B, C, D on a Circle are \((2,1),(4,3),(2,5),(0,3)\) Slope of \(A B=\frac{3-1}{4-2}=\frac{2}{2}=1\) Slope of \(\mathrm{BC}=\frac{5-3}{2-4}=-1\) \(\mathrm{ABC}\) is a right angle \(\Delta\) \(\therefore\) Centre of circle is mid-point of AC i.e. \(\left(\frac{2+2}{2}, \frac{1+5}{2}\right)=(2,3)\) \(\therefore\) Centre of circle is \((2+3 i)\)
TS EAMCET-14.09.2020
Complex Numbers and Quadratic Equation
117986
If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is
117985
If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is
1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Explanation:
D Four points A, B, C, D on a Circle are \((2,1),(4,3),(2,5),(0,3)\) Slope of \(A B=\frac{3-1}{4-2}=\frac{2}{2}=1\) Slope of \(\mathrm{BC}=\frac{5-3}{2-4}=-1\) \(\mathrm{ABC}\) is a right angle \(\Delta\) \(\therefore\) Centre of circle is mid-point of AC i.e. \(\left(\frac{2+2}{2}, \frac{1+5}{2}\right)=(2,3)\) \(\therefore\) Centre of circle is \((2+3 i)\)
TS EAMCET-14.09.2020
Complex Numbers and Quadratic Equation
117986
If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is
117985
If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is
1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Explanation:
D Four points A, B, C, D on a Circle are \((2,1),(4,3),(2,5),(0,3)\) Slope of \(A B=\frac{3-1}{4-2}=\frac{2}{2}=1\) Slope of \(\mathrm{BC}=\frac{5-3}{2-4}=-1\) \(\mathrm{ABC}\) is a right angle \(\Delta\) \(\therefore\) Centre of circle is mid-point of AC i.e. \(\left(\frac{2+2}{2}, \frac{1+5}{2}\right)=(2,3)\) \(\therefore\) Centre of circle is \((2+3 i)\)
TS EAMCET-14.09.2020
Complex Numbers and Quadratic Equation
117986
If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is