Argand Plane and Polar Representation
Complex Numbers and Quadratic Equation

117985 If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is

1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117986 If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is

1 2
2 1
3 -1
4 2020
Complex Numbers and Quadratic Equation

117987 Let \(w=\frac{1-i z}{z-i}\). If \(|w|=1\), which of the following must be true?

1 \(z\) lies inside the unit circle
2 \(z\) lies on real axis
3 \(z\) lies on imaginary axis
4 \(z\) lies outside the unit circle
5 \(\operatorname{Re} z\lt 0\)
Complex Numbers and Quadratic Equation

117988 Let \(z_1=1+i \sqrt{3}\) and \(z_2=1+i\), then \(\arg \left(\frac{z_1}{z_2}\right)\) is

1 \(\frac{5 \pi}{12}\)
2 \(\frac{7 \pi}{12}\)
3 \(\frac{11 \pi}{12}\)
4 \(\frac{3 \pi}{12}\)
5 Not defined
Complex Numbers and Quadratic Equation

117985 If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is

1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117986 If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is

1 2
2 1
3 -1
4 2020
Complex Numbers and Quadratic Equation

117987 Let \(w=\frac{1-i z}{z-i}\). If \(|w|=1\), which of the following must be true?

1 \(z\) lies inside the unit circle
2 \(z\) lies on real axis
3 \(z\) lies on imaginary axis
4 \(z\) lies outside the unit circle
5 \(\operatorname{Re} z\lt 0\)
Complex Numbers and Quadratic Equation

117988 Let \(z_1=1+i \sqrt{3}\) and \(z_2=1+i\), then \(\arg \left(\frac{z_1}{z_2}\right)\) is

1 \(\frac{5 \pi}{12}\)
2 \(\frac{7 \pi}{12}\)
3 \(\frac{11 \pi}{12}\)
4 \(\frac{3 \pi}{12}\)
5 Not defined
Complex Numbers and Quadratic Equation

117985 If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is

1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117986 If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is

1 2
2 1
3 -1
4 2020
Complex Numbers and Quadratic Equation

117987 Let \(w=\frac{1-i z}{z-i}\). If \(|w|=1\), which of the following must be true?

1 \(z\) lies inside the unit circle
2 \(z\) lies on real axis
3 \(z\) lies on imaginary axis
4 \(z\) lies outside the unit circle
5 \(\operatorname{Re} z\lt 0\)
Complex Numbers and Quadratic Equation

117988 Let \(z_1=1+i \sqrt{3}\) and \(z_2=1+i\), then \(\arg \left(\frac{z_1}{z_2}\right)\) is

1 \(\frac{5 \pi}{12}\)
2 \(\frac{7 \pi}{12}\)
3 \(\frac{11 \pi}{12}\)
4 \(\frac{3 \pi}{12}\)
5 Not defined
Complex Numbers and Quadratic Equation

117985 If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is

1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117986 If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is

1 2
2 1
3 -1
4 2020
Complex Numbers and Quadratic Equation

117987 Let \(w=\frac{1-i z}{z-i}\). If \(|w|=1\), which of the following must be true?

1 \(z\) lies inside the unit circle
2 \(z\) lies on real axis
3 \(z\) lies on imaginary axis
4 \(z\) lies outside the unit circle
5 \(\operatorname{Re} z\lt 0\)
Complex Numbers and Quadratic Equation

117988 Let \(z_1=1+i \sqrt{3}\) and \(z_2=1+i\), then \(\arg \left(\frac{z_1}{z_2}\right)\) is

1 \(\frac{5 \pi}{12}\)
2 \(\frac{7 \pi}{12}\)
3 \(\frac{11 \pi}{12}\)
4 \(\frac{3 \pi}{12}\)
5 Not defined
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here