117985
If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is
1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Explanation:
D Four points A, B, C, D on a Circle are \((2,1),(4,3),(2,5),(0,3)\) Slope of \(A B=\frac{3-1}{4-2}=\frac{2}{2}=1\) Slope of \(\mathrm{BC}=\frac{5-3}{2-4}=-1\) \(\mathrm{ABC}\) is a right angle \(\Delta\) \(\therefore\) Centre of circle is mid-point of AC i.e. \(\left(\frac{2+2}{2}, \frac{1+5}{2}\right)=(2,3)\) \(\therefore\) Centre of circle is \((2+3 i)\)
TS EAMCET-14.09.2020
Complex Numbers and Quadratic Equation
117986
If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Complex Numbers and Quadratic Equation
117985
If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is
1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Explanation:
D Four points A, B, C, D on a Circle are \((2,1),(4,3),(2,5),(0,3)\) Slope of \(A B=\frac{3-1}{4-2}=\frac{2}{2}=1\) Slope of \(\mathrm{BC}=\frac{5-3}{2-4}=-1\) \(\mathrm{ABC}\) is a right angle \(\Delta\) \(\therefore\) Centre of circle is mid-point of AC i.e. \(\left(\frac{2+2}{2}, \frac{1+5}{2}\right)=(2,3)\) \(\therefore\) Centre of circle is \((2+3 i)\)
TS EAMCET-14.09.2020
Complex Numbers and Quadratic Equation
117986
If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is
117985
If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is
1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Explanation:
D Four points A, B, C, D on a Circle are \((2,1),(4,3),(2,5),(0,3)\) Slope of \(A B=\frac{3-1}{4-2}=\frac{2}{2}=1\) Slope of \(\mathrm{BC}=\frac{5-3}{2-4}=-1\) \(\mathrm{ABC}\) is a right angle \(\Delta\) \(\therefore\) Centre of circle is mid-point of AC i.e. \(\left(\frac{2+2}{2}, \frac{1+5}{2}\right)=(2,3)\) \(\therefore\) Centre of circle is \((2+3 i)\)
TS EAMCET-14.09.2020
Complex Numbers and Quadratic Equation
117986
If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is
117985
If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is
1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Explanation:
D Four points A, B, C, D on a Circle are \((2,1),(4,3),(2,5),(0,3)\) Slope of \(A B=\frac{3-1}{4-2}=\frac{2}{2}=1\) Slope of \(\mathrm{BC}=\frac{5-3}{2-4}=-1\) \(\mathrm{ABC}\) is a right angle \(\Delta\) \(\therefore\) Centre of circle is mid-point of AC i.e. \(\left(\frac{2+2}{2}, \frac{1+5}{2}\right)=(2,3)\) \(\therefore\) Centre of circle is \((2+3 i)\)
TS EAMCET-14.09.2020
Complex Numbers and Quadratic Equation
117986
If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is