Argand Plane and Polar Representation
Complex Numbers and Quadratic Equation

117985 If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is

1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117986 If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is

1 2
2 1
3 -1
4 2020
Complex Numbers and Quadratic Equation

117987 Let \(w=\frac{1-i z}{z-i}\). If \(|w|=1\), which of the following must be true?

1 \(z\) lies inside the unit circle
2 \(z\) lies on real axis
3 \(z\) lies on imaginary axis
4 \(z\) lies outside the unit circle
5 \(\operatorname{Re} z\lt 0\)
Complex Numbers and Quadratic Equation

117988 Let \(z_1=1+i \sqrt{3}\) and \(z_2=1+i\), then \(\arg \left(\frac{z_1}{z_2}\right)\) is

1 \(\frac{5 \pi}{12}\)
2 \(\frac{7 \pi}{12}\)
3 \(\frac{11 \pi}{12}\)
4 \(\frac{3 \pi}{12}\)
5 Not defined
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117985 If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is

1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117986 If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is

1 2
2 1
3 -1
4 2020
Complex Numbers and Quadratic Equation

117987 Let \(w=\frac{1-i z}{z-i}\). If \(|w|=1\), which of the following must be true?

1 \(z\) lies inside the unit circle
2 \(z\) lies on real axis
3 \(z\) lies on imaginary axis
4 \(z\) lies outside the unit circle
5 \(\operatorname{Re} z\lt 0\)
Complex Numbers and Quadratic Equation

117988 Let \(z_1=1+i \sqrt{3}\) and \(z_2=1+i\), then \(\arg \left(\frac{z_1}{z_2}\right)\) is

1 \(\frac{5 \pi}{12}\)
2 \(\frac{7 \pi}{12}\)
3 \(\frac{11 \pi}{12}\)
4 \(\frac{3 \pi}{12}\)
5 Not defined
Complex Numbers and Quadratic Equation

117985 If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is

1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117986 If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is

1 2
2 1
3 -1
4 2020
Complex Numbers and Quadratic Equation

117987 Let \(w=\frac{1-i z}{z-i}\). If \(|w|=1\), which of the following must be true?

1 \(z\) lies inside the unit circle
2 \(z\) lies on real axis
3 \(z\) lies on imaginary axis
4 \(z\) lies outside the unit circle
5 \(\operatorname{Re} z\lt 0\)
Complex Numbers and Quadratic Equation

117988 Let \(z_1=1+i \sqrt{3}\) and \(z_2=1+i\), then \(\arg \left(\frac{z_1}{z_2}\right)\) is

1 \(\frac{5 \pi}{12}\)
2 \(\frac{7 \pi}{12}\)
3 \(\frac{11 \pi}{12}\)
4 \(\frac{3 \pi}{12}\)
5 Not defined
Complex Numbers and Quadratic Equation

117985 If the four points \(A, B, C, D\) in the Argand plane represented respectively by the complex numbers \(2+i, 4+3 i, 2+5 i, 3 i\) lie on a circle, then the centre of the circle is

1 \(1+2 \mathrm{i}\)
2 \(3+2 \mathrm{i}\)
3 \(3+4 \mathrm{i}\)
4 \(2+3 \mathrm{i}\)
Complex Numbers and Quadratic Equation

117986 If \(\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{2020}+\left(\frac{1+\cos \theta+i \sin \theta}{1-\cos \theta+i \sin \theta}\right)^{2021]}=x+\) iy, then the value of \(x+y\) at \(\theta=\frac{\pi}{2}\) is

1 2
2 1
3 -1
4 2020
Complex Numbers and Quadratic Equation

117987 Let \(w=\frac{1-i z}{z-i}\). If \(|w|=1\), which of the following must be true?

1 \(z\) lies inside the unit circle
2 \(z\) lies on real axis
3 \(z\) lies on imaginary axis
4 \(z\) lies outside the unit circle
5 \(\operatorname{Re} z\lt 0\)
Complex Numbers and Quadratic Equation

117988 Let \(z_1=1+i \sqrt{3}\) and \(z_2=1+i\), then \(\arg \left(\frac{z_1}{z_2}\right)\) is

1 \(\frac{5 \pi}{12}\)
2 \(\frac{7 \pi}{12}\)
3 \(\frac{11 \pi}{12}\)
4 \(\frac{3 \pi}{12}\)
5 Not defined