Argand Plane and Polar Representation
Complex Numbers and Quadratic Equation

117972 If the real part of \(\frac{\bar{z}+2}{\bar{z}-1}\) is \(4, z \neq 1\), then the locus of the point representing \(\mathrm{z}\) in the complex plane is

1 a straight line parallel to \(x\)-axis
2 a straight equally inclined to axes
3 a circle with radius 2
4 a circle with radius \(\frac{1}{2}\)
Complex Numbers and Quadratic Equation

117973 If \(\omega\) is the cubic root of unity, then value of the \(\left(1+\omega-\omega^2\right)^2+\left(1-\omega+\omega^2\right)^2+1\) is

1 -1
2 7
3 1
4 -3
Complex Numbers and Quadratic Equation

117974 For two complex numbers \(z_1, z_2\) the relation \(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\) hold, if

1 \(\arg \left(z_1\right)=\arg \left(z_2\right)\)
2 \(\arg \left(z_1\right)+\arg \left(z_2\right)=\frac{\pi}{2}\)
3 \(z_1 z_2=1\)
4 \(\left|z_1\right|=\left|z_2\right|\)
Complex Numbers and Quadratic Equation

117975 Complex number \(\mathrm{z}=\frac{\mathrm{i}-1}{\cos (\pi / 3)+\mathrm{i} \sin (\pi / 3)}\) in polar form is

1 \(r=\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)\)
2 \(r=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\)
3 \(r=\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\)
4 none of these
Complex Numbers and Quadratic Equation

117984 If \((\sqrt{3}+i)^{10}=a+b i, a, b \in R\), then the values of \(a\) and \(b\) are respectively

1 63 and \(-64 \sqrt{3}\)
2 128 and \(128 \sqrt{3}\)
3 256 and \(256 \sqrt{3}\)
4 512 and \(-512 \sqrt{3}\)
Complex Numbers and Quadratic Equation

117972 If the real part of \(\frac{\bar{z}+2}{\bar{z}-1}\) is \(4, z \neq 1\), then the locus of the point representing \(\mathrm{z}\) in the complex plane is

1 a straight line parallel to \(x\)-axis
2 a straight equally inclined to axes
3 a circle with radius 2
4 a circle with radius \(\frac{1}{2}\)
Complex Numbers and Quadratic Equation

117973 If \(\omega\) is the cubic root of unity, then value of the \(\left(1+\omega-\omega^2\right)^2+\left(1-\omega+\omega^2\right)^2+1\) is

1 -1
2 7
3 1
4 -3
Complex Numbers and Quadratic Equation

117974 For two complex numbers \(z_1, z_2\) the relation \(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\) hold, if

1 \(\arg \left(z_1\right)=\arg \left(z_2\right)\)
2 \(\arg \left(z_1\right)+\arg \left(z_2\right)=\frac{\pi}{2}\)
3 \(z_1 z_2=1\)
4 \(\left|z_1\right|=\left|z_2\right|\)
Complex Numbers and Quadratic Equation

117975 Complex number \(\mathrm{z}=\frac{\mathrm{i}-1}{\cos (\pi / 3)+\mathrm{i} \sin (\pi / 3)}\) in polar form is

1 \(r=\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)\)
2 \(r=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\)
3 \(r=\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\)
4 none of these
Complex Numbers and Quadratic Equation

117984 If \((\sqrt{3}+i)^{10}=a+b i, a, b \in R\), then the values of \(a\) and \(b\) are respectively

1 63 and \(-64 \sqrt{3}\)
2 128 and \(128 \sqrt{3}\)
3 256 and \(256 \sqrt{3}\)
4 512 and \(-512 \sqrt{3}\)
Complex Numbers and Quadratic Equation

117972 If the real part of \(\frac{\bar{z}+2}{\bar{z}-1}\) is \(4, z \neq 1\), then the locus of the point representing \(\mathrm{z}\) in the complex plane is

1 a straight line parallel to \(x\)-axis
2 a straight equally inclined to axes
3 a circle with radius 2
4 a circle with radius \(\frac{1}{2}\)
Complex Numbers and Quadratic Equation

117973 If \(\omega\) is the cubic root of unity, then value of the \(\left(1+\omega-\omega^2\right)^2+\left(1-\omega+\omega^2\right)^2+1\) is

1 -1
2 7
3 1
4 -3
Complex Numbers and Quadratic Equation

117974 For two complex numbers \(z_1, z_2\) the relation \(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\) hold, if

1 \(\arg \left(z_1\right)=\arg \left(z_2\right)\)
2 \(\arg \left(z_1\right)+\arg \left(z_2\right)=\frac{\pi}{2}\)
3 \(z_1 z_2=1\)
4 \(\left|z_1\right|=\left|z_2\right|\)
Complex Numbers and Quadratic Equation

117975 Complex number \(\mathrm{z}=\frac{\mathrm{i}-1}{\cos (\pi / 3)+\mathrm{i} \sin (\pi / 3)}\) in polar form is

1 \(r=\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)\)
2 \(r=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\)
3 \(r=\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\)
4 none of these
Complex Numbers and Quadratic Equation

117984 If \((\sqrt{3}+i)^{10}=a+b i, a, b \in R\), then the values of \(a\) and \(b\) are respectively

1 63 and \(-64 \sqrt{3}\)
2 128 and \(128 \sqrt{3}\)
3 256 and \(256 \sqrt{3}\)
4 512 and \(-512 \sqrt{3}\)
Complex Numbers and Quadratic Equation

117972 If the real part of \(\frac{\bar{z}+2}{\bar{z}-1}\) is \(4, z \neq 1\), then the locus of the point representing \(\mathrm{z}\) in the complex plane is

1 a straight line parallel to \(x\)-axis
2 a straight equally inclined to axes
3 a circle with radius 2
4 a circle with radius \(\frac{1}{2}\)
Complex Numbers and Quadratic Equation

117973 If \(\omega\) is the cubic root of unity, then value of the \(\left(1+\omega-\omega^2\right)^2+\left(1-\omega+\omega^2\right)^2+1\) is

1 -1
2 7
3 1
4 -3
Complex Numbers and Quadratic Equation

117974 For two complex numbers \(z_1, z_2\) the relation \(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\) hold, if

1 \(\arg \left(z_1\right)=\arg \left(z_2\right)\)
2 \(\arg \left(z_1\right)+\arg \left(z_2\right)=\frac{\pi}{2}\)
3 \(z_1 z_2=1\)
4 \(\left|z_1\right|=\left|z_2\right|\)
Complex Numbers and Quadratic Equation

117975 Complex number \(\mathrm{z}=\frac{\mathrm{i}-1}{\cos (\pi / 3)+\mathrm{i} \sin (\pi / 3)}\) in polar form is

1 \(r=\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)\)
2 \(r=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\)
3 \(r=\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\)
4 none of these
Complex Numbers and Quadratic Equation

117984 If \((\sqrt{3}+i)^{10}=a+b i, a, b \in R\), then the values of \(a\) and \(b\) are respectively

1 63 and \(-64 \sqrt{3}\)
2 128 and \(128 \sqrt{3}\)
3 256 and \(256 \sqrt{3}\)
4 512 and \(-512 \sqrt{3}\)
Complex Numbers and Quadratic Equation

117972 If the real part of \(\frac{\bar{z}+2}{\bar{z}-1}\) is \(4, z \neq 1\), then the locus of the point representing \(\mathrm{z}\) in the complex plane is

1 a straight line parallel to \(x\)-axis
2 a straight equally inclined to axes
3 a circle with radius 2
4 a circle with radius \(\frac{1}{2}\)
Complex Numbers and Quadratic Equation

117973 If \(\omega\) is the cubic root of unity, then value of the \(\left(1+\omega-\omega^2\right)^2+\left(1-\omega+\omega^2\right)^2+1\) is

1 -1
2 7
3 1
4 -3
Complex Numbers and Quadratic Equation

117974 For two complex numbers \(z_1, z_2\) the relation \(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\) hold, if

1 \(\arg \left(z_1\right)=\arg \left(z_2\right)\)
2 \(\arg \left(z_1\right)+\arg \left(z_2\right)=\frac{\pi}{2}\)
3 \(z_1 z_2=1\)
4 \(\left|z_1\right|=\left|z_2\right|\)
Complex Numbers and Quadratic Equation

117975 Complex number \(\mathrm{z}=\frac{\mathrm{i}-1}{\cos (\pi / 3)+\mathrm{i} \sin (\pi / 3)}\) in polar form is

1 \(r=\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)\)
2 \(r=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\)
3 \(r=\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\)
4 none of these
Complex Numbers and Quadratic Equation

117984 If \((\sqrt{3}+i)^{10}=a+b i, a, b \in R\), then the values of \(a\) and \(b\) are respectively

1 63 and \(-64 \sqrt{3}\)
2 128 and \(128 \sqrt{3}\)
3 256 and \(256 \sqrt{3}\)
4 512 and \(-512 \sqrt{3}\)