Argand Plane and Polar Representation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117976 In the argand diagram, all the complex numbers \(z\) satisfying \(|z-4 i|+|z+4 i|=10\) lie on a/an

1 straight line
2 circle
3 ellipse
4 parabola
Complex Numbers and Quadratic Equation

117977 \(P\) represents \(z=x+\) iy in argand plane and \(|3 z-1|=3|z-2|\), then locus of \(P\) is

1 \(x=0\)
2 \(x^2+y^2=8\)
3 \(y=x\)
4 \(6 x=7\)
Complex Numbers and Quadratic Equation

117978 The locus of the \(\mathrm{z}\) in the argand plane for which \(|z+1|^2+|z-1|^2=4\), is a

1 straight line
2 pair of straight lines
3 circle
4 parabola
Complex Numbers and Quadratic Equation

117979 If \(z=x+i y, x, y \in[R\) and if the point \(P\) in the Argand plane represents \(z\), then the locus of \(P\) satisfying the condition \(\operatorname{Arg}\left(\frac{z-1}{z-3 i}\right)=\frac{\pi}{2}\) is

1 \(\left\{z \in C /\left|z-\frac{1+3 i}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
2 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6=0\}\)
3 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6>0\),
\(\left.\left|z-\frac{1+3 i}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
4 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6\lt 0\),
\(\left.\left|z-\frac{1+3 \mathrm{i}}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
Complex Numbers and Quadratic Equation

117976 In the argand diagram, all the complex numbers \(z\) satisfying \(|z-4 i|+|z+4 i|=10\) lie on a/an

1 straight line
2 circle
3 ellipse
4 parabola
Complex Numbers and Quadratic Equation

117977 \(P\) represents \(z=x+\) iy in argand plane and \(|3 z-1|=3|z-2|\), then locus of \(P\) is

1 \(x=0\)
2 \(x^2+y^2=8\)
3 \(y=x\)
4 \(6 x=7\)
Complex Numbers and Quadratic Equation

117978 The locus of the \(\mathrm{z}\) in the argand plane for which \(|z+1|^2+|z-1|^2=4\), is a

1 straight line
2 pair of straight lines
3 circle
4 parabola
Complex Numbers and Quadratic Equation

117979 If \(z=x+i y, x, y \in[R\) and if the point \(P\) in the Argand plane represents \(z\), then the locus of \(P\) satisfying the condition \(\operatorname{Arg}\left(\frac{z-1}{z-3 i}\right)=\frac{\pi}{2}\) is

1 \(\left\{z \in C /\left|z-\frac{1+3 i}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
2 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6=0\}\)
3 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6>0\),
\(\left.\left|z-\frac{1+3 i}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
4 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6\lt 0\),
\(\left.\left|z-\frac{1+3 \mathrm{i}}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
Complex Numbers and Quadratic Equation

117976 In the argand diagram, all the complex numbers \(z\) satisfying \(|z-4 i|+|z+4 i|=10\) lie on a/an

1 straight line
2 circle
3 ellipse
4 parabola
Complex Numbers and Quadratic Equation

117977 \(P\) represents \(z=x+\) iy in argand plane and \(|3 z-1|=3|z-2|\), then locus of \(P\) is

1 \(x=0\)
2 \(x^2+y^2=8\)
3 \(y=x\)
4 \(6 x=7\)
Complex Numbers and Quadratic Equation

117978 The locus of the \(\mathrm{z}\) in the argand plane for which \(|z+1|^2+|z-1|^2=4\), is a

1 straight line
2 pair of straight lines
3 circle
4 parabola
Complex Numbers and Quadratic Equation

117979 If \(z=x+i y, x, y \in[R\) and if the point \(P\) in the Argand plane represents \(z\), then the locus of \(P\) satisfying the condition \(\operatorname{Arg}\left(\frac{z-1}{z-3 i}\right)=\frac{\pi}{2}\) is

1 \(\left\{z \in C /\left|z-\frac{1+3 i}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
2 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6=0\}\)
3 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6>0\),
\(\left.\left|z-\frac{1+3 i}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
4 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6\lt 0\),
\(\left.\left|z-\frac{1+3 \mathrm{i}}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117976 In the argand diagram, all the complex numbers \(z\) satisfying \(|z-4 i|+|z+4 i|=10\) lie on a/an

1 straight line
2 circle
3 ellipse
4 parabola
Complex Numbers and Quadratic Equation

117977 \(P\) represents \(z=x+\) iy in argand plane and \(|3 z-1|=3|z-2|\), then locus of \(P\) is

1 \(x=0\)
2 \(x^2+y^2=8\)
3 \(y=x\)
4 \(6 x=7\)
Complex Numbers and Quadratic Equation

117978 The locus of the \(\mathrm{z}\) in the argand plane for which \(|z+1|^2+|z-1|^2=4\), is a

1 straight line
2 pair of straight lines
3 circle
4 parabola
Complex Numbers and Quadratic Equation

117979 If \(z=x+i y, x, y \in[R\) and if the point \(P\) in the Argand plane represents \(z\), then the locus of \(P\) satisfying the condition \(\operatorname{Arg}\left(\frac{z-1}{z-3 i}\right)=\frac{\pi}{2}\) is

1 \(\left\{z \in C /\left|z-\frac{1+3 i}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
2 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6=0\}\)
3 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6>0\),
\(\left.\left|z-\frac{1+3 i}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)
4 \(\{z \in C /(3-i) z+(3+i) \bar{z}-6\lt 0\),
\(\left.\left|z-\frac{1+3 \mathrm{i}}{2}\right|=\frac{\sqrt{10}}{2}\right\}\)