117967 If xr=cosπ2r+isinπ2r, then x1⋅x2⋅x3… to ∞=
B xr=cosπ2r+isinπ2rxr=eiπ/2INow,x1x2x3……∞=eiπ/2eiπ/22eiπ/23+……∞=eiπ[12+122+123+……]=eiπ[1/21−1/2]=eiπ=cosπ+isinπ=−1
117968 The continued product of the four values of (cosπ3+isinπ3)3/4 is
A [(cosπ3+isinπ3)3]1/4=(cosπ+isinπ)1/4=[cos(2kπ+π)+isin(2kπ+π)]1/4,k=0,1,2,3=cos(2k+1)π4+isin(2k+1)π4,k=0,1,2,3The continued product of the four values iscos(π4+3π4+5π4+7π4)+isin(π4+3π4+5π4+7π4)=cos4π+isin4π=1+i.0=1
117970 What is the principal value of amplitude of 1− i?
A Let z=x+iy=1−iWe know that, amp(z)=tan−1(yx)=θthen, amp(z)=tan−1(|−1|)amp(z)=(π4)=θ∵ Given complex number lie in IV quadrant∴amp(z)=−θ=−π4
117971 The amplitude of sinπ5+i(1−cosπ5) is
D We have, sinπ5+i(1−cosπ5)Here,rcosθ=sin(π5)And,rsinθ=1−cosπ5∴tanθ=1−cos(π/5)sin(π/5)=2sin2(π/10)2sin(π/10)cos(π/10)tanθ=tan(π/10)θ=π/10