Modulus, Square Root and Argument of Complex Number
Complex Numbers and Quadratic Equation

117835 A complex number \(\mathrm{z}\) is such that arg
\(\left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}\). The points representing this complex number will lie on

1 an ellipse
2 a parabola
3 a circle
4 a straight line
Complex Numbers and Quadratic Equation

117836 If \(\omega=\frac{-1+\sqrt{3} i}{2}\) then \(\left(3+\omega+3 \omega^2\right)^4\) is

1 16
2 -16
3 \(16 \omega\)
4 \(16 \omega^2\)
Complex Numbers and Quadratic Equation

117837 If \(x+i y=(1-i \sqrt{3})^{100}\), then find \((x, y)\).

1 \(\left(2^{99}, 2^{99} \sqrt{3}\right)\)
2 \(\left(2^{99},-2^{99} \sqrt{3}\right)\)
3 \(\left(-2^{99}, 2^{99} \sqrt{3}\right)\)
4 None of these
Complex Numbers and Quadratic Equation

117838 If \(z=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}\), then \(\arg (z)\) is

1 \(60^{\circ}\)
2 \(120^{\circ}\)
3 \(240^{\circ}\)
4 \(300^{\circ}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117835 A complex number \(\mathrm{z}\) is such that arg
\(\left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}\). The points representing this complex number will lie on

1 an ellipse
2 a parabola
3 a circle
4 a straight line
Complex Numbers and Quadratic Equation

117836 If \(\omega=\frac{-1+\sqrt{3} i}{2}\) then \(\left(3+\omega+3 \omega^2\right)^4\) is

1 16
2 -16
3 \(16 \omega\)
4 \(16 \omega^2\)
Complex Numbers and Quadratic Equation

117837 If \(x+i y=(1-i \sqrt{3})^{100}\), then find \((x, y)\).

1 \(\left(2^{99}, 2^{99} \sqrt{3}\right)\)
2 \(\left(2^{99},-2^{99} \sqrt{3}\right)\)
3 \(\left(-2^{99}, 2^{99} \sqrt{3}\right)\)
4 None of these
Complex Numbers and Quadratic Equation

117838 If \(z=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}\), then \(\arg (z)\) is

1 \(60^{\circ}\)
2 \(120^{\circ}\)
3 \(240^{\circ}\)
4 \(300^{\circ}\)
Complex Numbers and Quadratic Equation

117835 A complex number \(\mathrm{z}\) is such that arg
\(\left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}\). The points representing this complex number will lie on

1 an ellipse
2 a parabola
3 a circle
4 a straight line
Complex Numbers and Quadratic Equation

117836 If \(\omega=\frac{-1+\sqrt{3} i}{2}\) then \(\left(3+\omega+3 \omega^2\right)^4\) is

1 16
2 -16
3 \(16 \omega\)
4 \(16 \omega^2\)
Complex Numbers and Quadratic Equation

117837 If \(x+i y=(1-i \sqrt{3})^{100}\), then find \((x, y)\).

1 \(\left(2^{99}, 2^{99} \sqrt{3}\right)\)
2 \(\left(2^{99},-2^{99} \sqrt{3}\right)\)
3 \(\left(-2^{99}, 2^{99} \sqrt{3}\right)\)
4 None of these
Complex Numbers and Quadratic Equation

117838 If \(z=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}\), then \(\arg (z)\) is

1 \(60^{\circ}\)
2 \(120^{\circ}\)
3 \(240^{\circ}\)
4 \(300^{\circ}\)
Complex Numbers and Quadratic Equation

117835 A complex number \(\mathrm{z}\) is such that arg
\(\left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}\). The points representing this complex number will lie on

1 an ellipse
2 a parabola
3 a circle
4 a straight line
Complex Numbers and Quadratic Equation

117836 If \(\omega=\frac{-1+\sqrt{3} i}{2}\) then \(\left(3+\omega+3 \omega^2\right)^4\) is

1 16
2 -16
3 \(16 \omega\)
4 \(16 \omega^2\)
Complex Numbers and Quadratic Equation

117837 If \(x+i y=(1-i \sqrt{3})^{100}\), then find \((x, y)\).

1 \(\left(2^{99}, 2^{99} \sqrt{3}\right)\)
2 \(\left(2^{99},-2^{99} \sqrt{3}\right)\)
3 \(\left(-2^{99}, 2^{99} \sqrt{3}\right)\)
4 None of these
Complex Numbers and Quadratic Equation

117838 If \(z=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}\), then \(\arg (z)\) is

1 \(60^{\circ}\)
2 \(120^{\circ}\)
3 \(240^{\circ}\)
4 \(300^{\circ}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here