Modulus, Square Root and Argument of Complex Number
Complex Numbers and Quadratic Equation

117839 If \(\mathbf{n}\) is integer which leaves remainder one when divided by three. Then \((1+\sqrt{3} \mathbf{i})^{\mathrm{n}}+(1-\sqrt{3} \mathrm{i})^{\mathrm{n}}\) equals

1 \(-2^{\mathrm{n}+1}\)
2 \(2^{\mathrm{n}+1}\)
3 \(-(-2)^{\mathrm{n}}\)
4 \(-2^{\mathrm{n}}\)
Complex Numbers and Quadratic Equation

117840 If \(\omega\) is an imaginary cube root of 1 , then the value of \(1(2-\omega)\left(2-\omega^2\right)+2(3-\omega)\left(3-\omega^2\right)+\ldots\) \(+(n-1)(n-\omega)\left(n-\omega^2\right)\) is

1 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}-\mathrm{n}\)
2 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\mathrm{n}\)
4 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
Complex Numbers and Quadratic Equation

117841 If \(z(2-2 \sqrt{3} i)^2=i(\sqrt{3}+i)^4\), then \(\arg (z)=\)

1 \(\frac{\pi}{6}\)
2 \(\frac{-\pi}{6}\)
3 \(\frac{-7 \pi}{6}\)
4 \(\frac{5 \pi}{6}\)
Complex Numbers and Quadratic Equation

117842 The equation \(|\mathbf{z}+\mathbf{i}|-|\mathbf{z}-\mathbf{i}|=\mathbf{k}\) represents a hyperbola, if

1 \(\mathrm{k} \in(-2,2)\)
2 \(\mathrm{k} \in(-2,0)\)
3 \(\mathrm{k} \in\{0,2\}\)
4 \(\mathrm{k} \in\{-2,2\}\)
Complex Numbers and Quadratic Equation

117843 If \(\mathrm{z}\) is any complex number satisfying \(|\mathrm{z}-1|=\) 1 , then which of the following is correct?

1 \(\arg (z-1)=2 \arg (z)\)
2 \(2 \arg (\mathrm{z})=\frac{2}{3} \arg \left(\mathrm{z}^2-\mathrm{z}\right)\)
3 \(\arg (z-1)=\arg (z+1)\)
4 \(\arg (z)=2 \arg (z+1)\)
Complex Numbers and Quadratic Equation

117839 If \(\mathbf{n}\) is integer which leaves remainder one when divided by three. Then \((1+\sqrt{3} \mathbf{i})^{\mathrm{n}}+(1-\sqrt{3} \mathrm{i})^{\mathrm{n}}\) equals

1 \(-2^{\mathrm{n}+1}\)
2 \(2^{\mathrm{n}+1}\)
3 \(-(-2)^{\mathrm{n}}\)
4 \(-2^{\mathrm{n}}\)
Complex Numbers and Quadratic Equation

117840 If \(\omega\) is an imaginary cube root of 1 , then the value of \(1(2-\omega)\left(2-\omega^2\right)+2(3-\omega)\left(3-\omega^2\right)+\ldots\) \(+(n-1)(n-\omega)\left(n-\omega^2\right)\) is

1 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}-\mathrm{n}\)
2 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\mathrm{n}\)
4 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
Complex Numbers and Quadratic Equation

117841 If \(z(2-2 \sqrt{3} i)^2=i(\sqrt{3}+i)^4\), then \(\arg (z)=\)

1 \(\frac{\pi}{6}\)
2 \(\frac{-\pi}{6}\)
3 \(\frac{-7 \pi}{6}\)
4 \(\frac{5 \pi}{6}\)
Complex Numbers and Quadratic Equation

117842 The equation \(|\mathbf{z}+\mathbf{i}|-|\mathbf{z}-\mathbf{i}|=\mathbf{k}\) represents a hyperbola, if

1 \(\mathrm{k} \in(-2,2)\)
2 \(\mathrm{k} \in(-2,0)\)
3 \(\mathrm{k} \in\{0,2\}\)
4 \(\mathrm{k} \in\{-2,2\}\)
Complex Numbers and Quadratic Equation

117843 If \(\mathrm{z}\) is any complex number satisfying \(|\mathrm{z}-1|=\) 1 , then which of the following is correct?

1 \(\arg (z-1)=2 \arg (z)\)
2 \(2 \arg (\mathrm{z})=\frac{2}{3} \arg \left(\mathrm{z}^2-\mathrm{z}\right)\)
3 \(\arg (z-1)=\arg (z+1)\)
4 \(\arg (z)=2 \arg (z+1)\)
Complex Numbers and Quadratic Equation

117839 If \(\mathbf{n}\) is integer which leaves remainder one when divided by three. Then \((1+\sqrt{3} \mathbf{i})^{\mathrm{n}}+(1-\sqrt{3} \mathrm{i})^{\mathrm{n}}\) equals

1 \(-2^{\mathrm{n}+1}\)
2 \(2^{\mathrm{n}+1}\)
3 \(-(-2)^{\mathrm{n}}\)
4 \(-2^{\mathrm{n}}\)
Complex Numbers and Quadratic Equation

117840 If \(\omega\) is an imaginary cube root of 1 , then the value of \(1(2-\omega)\left(2-\omega^2\right)+2(3-\omega)\left(3-\omega^2\right)+\ldots\) \(+(n-1)(n-\omega)\left(n-\omega^2\right)\) is

1 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}-\mathrm{n}\)
2 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\mathrm{n}\)
4 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
Complex Numbers and Quadratic Equation

117841 If \(z(2-2 \sqrt{3} i)^2=i(\sqrt{3}+i)^4\), then \(\arg (z)=\)

1 \(\frac{\pi}{6}\)
2 \(\frac{-\pi}{6}\)
3 \(\frac{-7 \pi}{6}\)
4 \(\frac{5 \pi}{6}\)
Complex Numbers and Quadratic Equation

117842 The equation \(|\mathbf{z}+\mathbf{i}|-|\mathbf{z}-\mathbf{i}|=\mathbf{k}\) represents a hyperbola, if

1 \(\mathrm{k} \in(-2,2)\)
2 \(\mathrm{k} \in(-2,0)\)
3 \(\mathrm{k} \in\{0,2\}\)
4 \(\mathrm{k} \in\{-2,2\}\)
Complex Numbers and Quadratic Equation

117843 If \(\mathrm{z}\) is any complex number satisfying \(|\mathrm{z}-1|=\) 1 , then which of the following is correct?

1 \(\arg (z-1)=2 \arg (z)\)
2 \(2 \arg (\mathrm{z})=\frac{2}{3} \arg \left(\mathrm{z}^2-\mathrm{z}\right)\)
3 \(\arg (z-1)=\arg (z+1)\)
4 \(\arg (z)=2 \arg (z+1)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117839 If \(\mathbf{n}\) is integer which leaves remainder one when divided by three. Then \((1+\sqrt{3} \mathbf{i})^{\mathrm{n}}+(1-\sqrt{3} \mathrm{i})^{\mathrm{n}}\) equals

1 \(-2^{\mathrm{n}+1}\)
2 \(2^{\mathrm{n}+1}\)
3 \(-(-2)^{\mathrm{n}}\)
4 \(-2^{\mathrm{n}}\)
Complex Numbers and Quadratic Equation

117840 If \(\omega\) is an imaginary cube root of 1 , then the value of \(1(2-\omega)\left(2-\omega^2\right)+2(3-\omega)\left(3-\omega^2\right)+\ldots\) \(+(n-1)(n-\omega)\left(n-\omega^2\right)\) is

1 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}-\mathrm{n}\)
2 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\mathrm{n}\)
4 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
Complex Numbers and Quadratic Equation

117841 If \(z(2-2 \sqrt{3} i)^2=i(\sqrt{3}+i)^4\), then \(\arg (z)=\)

1 \(\frac{\pi}{6}\)
2 \(\frac{-\pi}{6}\)
3 \(\frac{-7 \pi}{6}\)
4 \(\frac{5 \pi}{6}\)
Complex Numbers and Quadratic Equation

117842 The equation \(|\mathbf{z}+\mathbf{i}|-|\mathbf{z}-\mathbf{i}|=\mathbf{k}\) represents a hyperbola, if

1 \(\mathrm{k} \in(-2,2)\)
2 \(\mathrm{k} \in(-2,0)\)
3 \(\mathrm{k} \in\{0,2\}\)
4 \(\mathrm{k} \in\{-2,2\}\)
Complex Numbers and Quadratic Equation

117843 If \(\mathrm{z}\) is any complex number satisfying \(|\mathrm{z}-1|=\) 1 , then which of the following is correct?

1 \(\arg (z-1)=2 \arg (z)\)
2 \(2 \arg (\mathrm{z})=\frac{2}{3} \arg \left(\mathrm{z}^2-\mathrm{z}\right)\)
3 \(\arg (z-1)=\arg (z+1)\)
4 \(\arg (z)=2 \arg (z+1)\)
Complex Numbers and Quadratic Equation

117839 If \(\mathbf{n}\) is integer which leaves remainder one when divided by three. Then \((1+\sqrt{3} \mathbf{i})^{\mathrm{n}}+(1-\sqrt{3} \mathrm{i})^{\mathrm{n}}\) equals

1 \(-2^{\mathrm{n}+1}\)
2 \(2^{\mathrm{n}+1}\)
3 \(-(-2)^{\mathrm{n}}\)
4 \(-2^{\mathrm{n}}\)
Complex Numbers and Quadratic Equation

117840 If \(\omega\) is an imaginary cube root of 1 , then the value of \(1(2-\omega)\left(2-\omega^2\right)+2(3-\omega)\left(3-\omega^2\right)+\ldots\) \(+(n-1)(n-\omega)\left(n-\omega^2\right)\) is

1 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}-\mathrm{n}\)
2 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
3 \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\mathrm{n}\)
4 \(\frac{\mathrm{n}^2(\mathrm{n}+1)^2}{4}-\mathrm{n}\)
Complex Numbers and Quadratic Equation

117841 If \(z(2-2 \sqrt{3} i)^2=i(\sqrt{3}+i)^4\), then \(\arg (z)=\)

1 \(\frac{\pi}{6}\)
2 \(\frac{-\pi}{6}\)
3 \(\frac{-7 \pi}{6}\)
4 \(\frac{5 \pi}{6}\)
Complex Numbers and Quadratic Equation

117842 The equation \(|\mathbf{z}+\mathbf{i}|-|\mathbf{z}-\mathbf{i}|=\mathbf{k}\) represents a hyperbola, if

1 \(\mathrm{k} \in(-2,2)\)
2 \(\mathrm{k} \in(-2,0)\)
3 \(\mathrm{k} \in\{0,2\}\)
4 \(\mathrm{k} \in\{-2,2\}\)
Complex Numbers and Quadratic Equation

117843 If \(\mathrm{z}\) is any complex number satisfying \(|\mathrm{z}-1|=\) 1 , then which of the following is correct?

1 \(\arg (z-1)=2 \arg (z)\)
2 \(2 \arg (\mathrm{z})=\frac{2}{3} \arg \left(\mathrm{z}^2-\mathrm{z}\right)\)
3 \(\arg (z-1)=\arg (z+1)\)
4 \(\arg (z)=2 \arg (z+1)\)