Modulus, Square Root and Argument of Complex Number
Complex Numbers and Quadratic Equation

117844 If \(\frac{|z-2|}{|z-3|}=2\) represents a circle, then its radius is equal to

1 1
2 \(\frac{1}{3}\)
3 \(\frac{3}{4}\)
4 \(\frac{2}{3}\)
Complex Numbers and Quadratic Equation

117845 If \(\theta\) is real and \(z_1, z_2\) are connected by \(\mathrm{z}_1^2+\mathrm{z}_2^2+2 \mathrm{z}_1 \mathrm{z}_2 \cos \theta=0\), then triangle with vertices \(0, z_1\) and \(z_2\) is

1 equilateral
2 right angled
3 isosceles
4 None of above
Complex Numbers and Quadratic Equation

117846 If \(\mathrm{z}+\mathrm{z}^{-1}=1\), then \(\mathrm{z}^{100}+\mathrm{z}^{-100}\) is equal to

1 i
2 \(-\mathrm{i}\)
3 1
4 -1
Complex Numbers and Quadratic Equation

117847 If \(x=a+b, y=a \omega+b \omega^2\) and \(z=a \omega^2+b \omega\), then \(x y z\) is equal to

1 \((a+b)^3\)
2 \(a^3+b^3\)
3 \(a^3-b^3\)
4 \((a+b)^3-3 a b(a+b)\)
Complex Numbers and Quadratic Equation

117844 If \(\frac{|z-2|}{|z-3|}=2\) represents a circle, then its radius is equal to

1 1
2 \(\frac{1}{3}\)
3 \(\frac{3}{4}\)
4 \(\frac{2}{3}\)
Complex Numbers and Quadratic Equation

117845 If \(\theta\) is real and \(z_1, z_2\) are connected by \(\mathrm{z}_1^2+\mathrm{z}_2^2+2 \mathrm{z}_1 \mathrm{z}_2 \cos \theta=0\), then triangle with vertices \(0, z_1\) and \(z_2\) is

1 equilateral
2 right angled
3 isosceles
4 None of above
Complex Numbers and Quadratic Equation

117846 If \(\mathrm{z}+\mathrm{z}^{-1}=1\), then \(\mathrm{z}^{100}+\mathrm{z}^{-100}\) is equal to

1 i
2 \(-\mathrm{i}\)
3 1
4 -1
Complex Numbers and Quadratic Equation

117847 If \(x=a+b, y=a \omega+b \omega^2\) and \(z=a \omega^2+b \omega\), then \(x y z\) is equal to

1 \((a+b)^3\)
2 \(a^3+b^3\)
3 \(a^3-b^3\)
4 \((a+b)^3-3 a b(a+b)\)
Complex Numbers and Quadratic Equation

117844 If \(\frac{|z-2|}{|z-3|}=2\) represents a circle, then its radius is equal to

1 1
2 \(\frac{1}{3}\)
3 \(\frac{3}{4}\)
4 \(\frac{2}{3}\)
Complex Numbers and Quadratic Equation

117845 If \(\theta\) is real and \(z_1, z_2\) are connected by \(\mathrm{z}_1^2+\mathrm{z}_2^2+2 \mathrm{z}_1 \mathrm{z}_2 \cos \theta=0\), then triangle with vertices \(0, z_1\) and \(z_2\) is

1 equilateral
2 right angled
3 isosceles
4 None of above
Complex Numbers and Quadratic Equation

117846 If \(\mathrm{z}+\mathrm{z}^{-1}=1\), then \(\mathrm{z}^{100}+\mathrm{z}^{-100}\) is equal to

1 i
2 \(-\mathrm{i}\)
3 1
4 -1
Complex Numbers and Quadratic Equation

117847 If \(x=a+b, y=a \omega+b \omega^2\) and \(z=a \omega^2+b \omega\), then \(x y z\) is equal to

1 \((a+b)^3\)
2 \(a^3+b^3\)
3 \(a^3-b^3\)
4 \((a+b)^3-3 a b(a+b)\)
Complex Numbers and Quadratic Equation

117844 If \(\frac{|z-2|}{|z-3|}=2\) represents a circle, then its radius is equal to

1 1
2 \(\frac{1}{3}\)
3 \(\frac{3}{4}\)
4 \(\frac{2}{3}\)
Complex Numbers and Quadratic Equation

117845 If \(\theta\) is real and \(z_1, z_2\) are connected by \(\mathrm{z}_1^2+\mathrm{z}_2^2+2 \mathrm{z}_1 \mathrm{z}_2 \cos \theta=0\), then triangle with vertices \(0, z_1\) and \(z_2\) is

1 equilateral
2 right angled
3 isosceles
4 None of above
Complex Numbers and Quadratic Equation

117846 If \(\mathrm{z}+\mathrm{z}^{-1}=1\), then \(\mathrm{z}^{100}+\mathrm{z}^{-100}\) is equal to

1 i
2 \(-\mathrm{i}\)
3 1
4 -1
Complex Numbers and Quadratic Equation

117847 If \(x=a+b, y=a \omega+b \omega^2\) and \(z=a \omega^2+b \omega\), then \(x y z\) is equal to

1 \((a+b)^3\)
2 \(a^3+b^3\)
3 \(a^3-b^3\)
4 \((a+b)^3-3 a b(a+b)\)