Modulus, Square Root and Argument of Complex Number
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117817 If \(z=x+i y\), then the equation \(|z+1|=|z-1|\) represents

1 a parabola
2 \(x\)-axis
3 y-axis
4 a circle
Complex Numbers and Quadratic Equation

117818 If \(1, \omega, \omega^2\) are three cube roots of unity, then \(\left(1-\omega+\omega^2\right)\left(1+\omega-\omega^2\right)\) is

1 2
2 4
3 1
4 3
Complex Numbers and Quadratic Equation

117819 If \(z=\frac{(\sqrt{3}+i)^3(3 i+4)^2}{(8+6 i)^2}\), then \(|z|\) is equal to

1 1
2 3
3 0
4 2
Complex Numbers and Quadratic Equation

117820 If \(\alpha\) is a complex number such that \(\alpha^2-\alpha+1\) \(=0\), then \(\alpha^{2011}=\)

1 1
2 \(-\alpha\)
3 \(\alpha^2\)
4 \(\alpha\)
Complex Numbers and Quadratic Equation

117817 If \(z=x+i y\), then the equation \(|z+1|=|z-1|\) represents

1 a parabola
2 \(x\)-axis
3 y-axis
4 a circle
Complex Numbers and Quadratic Equation

117818 If \(1, \omega, \omega^2\) are three cube roots of unity, then \(\left(1-\omega+\omega^2\right)\left(1+\omega-\omega^2\right)\) is

1 2
2 4
3 1
4 3
Complex Numbers and Quadratic Equation

117819 If \(z=\frac{(\sqrt{3}+i)^3(3 i+4)^2}{(8+6 i)^2}\), then \(|z|\) is equal to

1 1
2 3
3 0
4 2
Complex Numbers and Quadratic Equation

117820 If \(\alpha\) is a complex number such that \(\alpha^2-\alpha+1\) \(=0\), then \(\alpha^{2011}=\)

1 1
2 \(-\alpha\)
3 \(\alpha^2\)
4 \(\alpha\)
Complex Numbers and Quadratic Equation

117817 If \(z=x+i y\), then the equation \(|z+1|=|z-1|\) represents

1 a parabola
2 \(x\)-axis
3 y-axis
4 a circle
Complex Numbers and Quadratic Equation

117818 If \(1, \omega, \omega^2\) are three cube roots of unity, then \(\left(1-\omega+\omega^2\right)\left(1+\omega-\omega^2\right)\) is

1 2
2 4
3 1
4 3
Complex Numbers and Quadratic Equation

117819 If \(z=\frac{(\sqrt{3}+i)^3(3 i+4)^2}{(8+6 i)^2}\), then \(|z|\) is equal to

1 1
2 3
3 0
4 2
Complex Numbers and Quadratic Equation

117820 If \(\alpha\) is a complex number such that \(\alpha^2-\alpha+1\) \(=0\), then \(\alpha^{2011}=\)

1 1
2 \(-\alpha\)
3 \(\alpha^2\)
4 \(\alpha\)
Complex Numbers and Quadratic Equation

117817 If \(z=x+i y\), then the equation \(|z+1|=|z-1|\) represents

1 a parabola
2 \(x\)-axis
3 y-axis
4 a circle
Complex Numbers and Quadratic Equation

117818 If \(1, \omega, \omega^2\) are three cube roots of unity, then \(\left(1-\omega+\omega^2\right)\left(1+\omega-\omega^2\right)\) is

1 2
2 4
3 1
4 3
Complex Numbers and Quadratic Equation

117819 If \(z=\frac{(\sqrt{3}+i)^3(3 i+4)^2}{(8+6 i)^2}\), then \(|z|\) is equal to

1 1
2 3
3 0
4 2
Complex Numbers and Quadratic Equation

117820 If \(\alpha\) is a complex number such that \(\alpha^2-\alpha+1\) \(=0\), then \(\alpha^{2011}=\)

1 1
2 \(-\alpha\)
3 \(\alpha^2\)
4 \(\alpha\)