Complex Numbers and Quadratic Equation
117814
If \(z_1, z_2\) be two complex numbers such that \(\mid z_1\) \(+\mathbf{z}_2|=| \mathbf{z}_1|+| \mathbf{z}_2 \mid\), the
1 \(\arg \left(z_1\right)+\arg \left(z_2\right)=0\)
2 \(\arg \left(z_1 / z_2\right)=0\)
3 \(\left|z_1\right|=\left|z_2\right|\)
4 none of these
Explanation:
B Given,
\(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\)
Squaring both sides, we get
\(\left|z_1+z_2\right|^2=\left(\left|z_1\right|+\left|z_2\right|\right)^2\)
\(\left|z_1\right|^2+\left|z_2\right|^2+2\left|z_1\right|\left|z_2\right| \cos \left(\arg \left(z_1\right)-\arg \left(z_2\right)\right)\)
\(=\left|z_1\right|^2+\left|z_2\right|^2+2\left|z_1\right|\left|z_2\right|\)
\(\cos \left(\arg \left(z_1\right)-\arg \left(z_2\right)\right)=1\)
\(\arg \left(z_1\right)-\arg \left(z_2\right)=0\)
\(\arg \left(\frac{\mathrm{z}_1}{\mathrm{z}_2}\right)=0\)