Modulus, Square Root and Argument of Complex Number
Complex Numbers and Quadratic Equation

117813 If \(z=a+i b\) satisfies \(\arg (z-1)=\arg (z+3 i)\), then \((a-1): b=\)

1 \(2: 1\)
2 \(1: 3\)
3 \(-1: 3\)
4 none of these
Complex Numbers and Quadratic Equation

117814 If \(z_1, z_2\) be two complex numbers such that \(\mid z_1\) \(+\mathbf{z}_2|=| \mathbf{z}_1|+| \mathbf{z}_2 \mid\), the

1 \(\arg \left(z_1\right)+\arg \left(z_2\right)=0\)
2 \(\arg \left(z_1 / z_2\right)=0\)
3 \(\left|z_1\right|=\left|z_2\right|\)
4 none of these
Complex Numbers and Quadratic Equation

117815 If \(\frac{1}{a-i b}=\frac{x-i y}{x+i y}\), then \(a^2+b^2\) is

1 \(x^2+y^2\)
2 1
3 0
4 5
Complex Numbers and Quadratic Equation

117816 If \(z=\sqrt{20 i-21}+\sqrt{20 i+21}\) then the principal value of arg (z) can be

1 \(\frac{\pi}{4}\)
2 \(\frac{-3 \pi}{4}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{-\pi}{4}\)
Complex Numbers and Quadratic Equation

117813 If \(z=a+i b\) satisfies \(\arg (z-1)=\arg (z+3 i)\), then \((a-1): b=\)

1 \(2: 1\)
2 \(1: 3\)
3 \(-1: 3\)
4 none of these
Complex Numbers and Quadratic Equation

117814 If \(z_1, z_2\) be two complex numbers such that \(\mid z_1\) \(+\mathbf{z}_2|=| \mathbf{z}_1|+| \mathbf{z}_2 \mid\), the

1 \(\arg \left(z_1\right)+\arg \left(z_2\right)=0\)
2 \(\arg \left(z_1 / z_2\right)=0\)
3 \(\left|z_1\right|=\left|z_2\right|\)
4 none of these
Complex Numbers and Quadratic Equation

117815 If \(\frac{1}{a-i b}=\frac{x-i y}{x+i y}\), then \(a^2+b^2\) is

1 \(x^2+y^2\)
2 1
3 0
4 5
Complex Numbers and Quadratic Equation

117816 If \(z=\sqrt{20 i-21}+\sqrt{20 i+21}\) then the principal value of arg (z) can be

1 \(\frac{\pi}{4}\)
2 \(\frac{-3 \pi}{4}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{-\pi}{4}\)
Complex Numbers and Quadratic Equation

117813 If \(z=a+i b\) satisfies \(\arg (z-1)=\arg (z+3 i)\), then \((a-1): b=\)

1 \(2: 1\)
2 \(1: 3\)
3 \(-1: 3\)
4 none of these
Complex Numbers and Quadratic Equation

117814 If \(z_1, z_2\) be two complex numbers such that \(\mid z_1\) \(+\mathbf{z}_2|=| \mathbf{z}_1|+| \mathbf{z}_2 \mid\), the

1 \(\arg \left(z_1\right)+\arg \left(z_2\right)=0\)
2 \(\arg \left(z_1 / z_2\right)=0\)
3 \(\left|z_1\right|=\left|z_2\right|\)
4 none of these
Complex Numbers and Quadratic Equation

117815 If \(\frac{1}{a-i b}=\frac{x-i y}{x+i y}\), then \(a^2+b^2\) is

1 \(x^2+y^2\)
2 1
3 0
4 5
Complex Numbers and Quadratic Equation

117816 If \(z=\sqrt{20 i-21}+\sqrt{20 i+21}\) then the principal value of arg (z) can be

1 \(\frac{\pi}{4}\)
2 \(\frac{-3 \pi}{4}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{-\pi}{4}\)
Complex Numbers and Quadratic Equation

117813 If \(z=a+i b\) satisfies \(\arg (z-1)=\arg (z+3 i)\), then \((a-1): b=\)

1 \(2: 1\)
2 \(1: 3\)
3 \(-1: 3\)
4 none of these
Complex Numbers and Quadratic Equation

117814 If \(z_1, z_2\) be two complex numbers such that \(\mid z_1\) \(+\mathbf{z}_2|=| \mathbf{z}_1|+| \mathbf{z}_2 \mid\), the

1 \(\arg \left(z_1\right)+\arg \left(z_2\right)=0\)
2 \(\arg \left(z_1 / z_2\right)=0\)
3 \(\left|z_1\right|=\left|z_2\right|\)
4 none of these
Complex Numbers and Quadratic Equation

117815 If \(\frac{1}{a-i b}=\frac{x-i y}{x+i y}\), then \(a^2+b^2\) is

1 \(x^2+y^2\)
2 1
3 0
4 5
Complex Numbers and Quadratic Equation

117816 If \(z=\sqrt{20 i-21}+\sqrt{20 i+21}\) then the principal value of arg (z) can be

1 \(\frac{\pi}{4}\)
2 \(\frac{-3 \pi}{4}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{-\pi}{4}\)