Modulus, Square Root and Argument of Complex Number
Complex Numbers and Quadratic Equation

117886 The equation \(|\mathbf{z}-\mathbf{i}|=|\mathbf{z}-\mathbf{1}|, \mathbf{i}=\sqrt{-1}\), represents

1 a circle of radius \(\frac{1}{2}\)
2 line passing through the origin with slope 1
3 a circle of radius 1
4 line passing through the origin with slope -1
Complex Numbers and Quadratic Equation

117823 If \((\sqrt{5}+\sqrt{3} i)^{33}=2^{49} z\), then modulus of the complex number \(\mathrm{z}\) is equal to

1 1
2 \(\sqrt{2}\)
3 \(2 \sqrt{2}\)
4 4
Complex Numbers and Quadratic Equation

117810 If \(x^3-6 x^2+12 x+19=0\) and \(\omega\) is a non-real cube root of 1 , then \(x=\)

1 -1
2 \(2-3 \omega\)
3 \(2-3 \omega^2\)
4 (a) or (b) (c)
Complex Numbers and Quadratic Equation

117811 If \(\alpha\) is an \(n^{\text {th }}\) root of unity, other 1 , then \(1+2 \alpha\) \(+3 \alpha^2+\ldots \ldots+n \cdot \alpha^{n-1}\) equals

1 \(\frac{\mathrm{n}}{1-\alpha}\)
2 \(-\frac{\mathrm{n}}{1-\alpha}\)
3 \(-\frac{\mathrm{n}}{(1-\alpha)^2}\)
4 none of these
Complex Numbers and Quadratic Equation

117812 If \(\mathrm{z}_{\mathrm{r}}=\cos \frac{21 \pi}{5}+\mathrm{i} \sin \frac{21 \pi}{5}, \mathrm{r}=0,1,2,3,4\), then \(\mathrm{z}_0\) \(z_1 z_2 z_3 z_4\) is equal to

1 -1
2 0
3 1
4 none of these
Complex Numbers and Quadratic Equation

117886 The equation \(|\mathbf{z}-\mathbf{i}|=|\mathbf{z}-\mathbf{1}|, \mathbf{i}=\sqrt{-1}\), represents

1 a circle of radius \(\frac{1}{2}\)
2 line passing through the origin with slope 1
3 a circle of radius 1
4 line passing through the origin with slope -1
Complex Numbers and Quadratic Equation

117823 If \((\sqrt{5}+\sqrt{3} i)^{33}=2^{49} z\), then modulus of the complex number \(\mathrm{z}\) is equal to

1 1
2 \(\sqrt{2}\)
3 \(2 \sqrt{2}\)
4 4
Complex Numbers and Quadratic Equation

117810 If \(x^3-6 x^2+12 x+19=0\) and \(\omega\) is a non-real cube root of 1 , then \(x=\)

1 -1
2 \(2-3 \omega\)
3 \(2-3 \omega^2\)
4 (a) or (b) (c)
Complex Numbers and Quadratic Equation

117811 If \(\alpha\) is an \(n^{\text {th }}\) root of unity, other 1 , then \(1+2 \alpha\) \(+3 \alpha^2+\ldots \ldots+n \cdot \alpha^{n-1}\) equals

1 \(\frac{\mathrm{n}}{1-\alpha}\)
2 \(-\frac{\mathrm{n}}{1-\alpha}\)
3 \(-\frac{\mathrm{n}}{(1-\alpha)^2}\)
4 none of these
Complex Numbers and Quadratic Equation

117812 If \(\mathrm{z}_{\mathrm{r}}=\cos \frac{21 \pi}{5}+\mathrm{i} \sin \frac{21 \pi}{5}, \mathrm{r}=0,1,2,3,4\), then \(\mathrm{z}_0\) \(z_1 z_2 z_3 z_4\) is equal to

1 -1
2 0
3 1
4 none of these
Complex Numbers and Quadratic Equation

117886 The equation \(|\mathbf{z}-\mathbf{i}|=|\mathbf{z}-\mathbf{1}|, \mathbf{i}=\sqrt{-1}\), represents

1 a circle of radius \(\frac{1}{2}\)
2 line passing through the origin with slope 1
3 a circle of radius 1
4 line passing through the origin with slope -1
Complex Numbers and Quadratic Equation

117823 If \((\sqrt{5}+\sqrt{3} i)^{33}=2^{49} z\), then modulus of the complex number \(\mathrm{z}\) is equal to

1 1
2 \(\sqrt{2}\)
3 \(2 \sqrt{2}\)
4 4
Complex Numbers and Quadratic Equation

117810 If \(x^3-6 x^2+12 x+19=0\) and \(\omega\) is a non-real cube root of 1 , then \(x=\)

1 -1
2 \(2-3 \omega\)
3 \(2-3 \omega^2\)
4 (a) or (b) (c)
Complex Numbers and Quadratic Equation

117811 If \(\alpha\) is an \(n^{\text {th }}\) root of unity, other 1 , then \(1+2 \alpha\) \(+3 \alpha^2+\ldots \ldots+n \cdot \alpha^{n-1}\) equals

1 \(\frac{\mathrm{n}}{1-\alpha}\)
2 \(-\frac{\mathrm{n}}{1-\alpha}\)
3 \(-\frac{\mathrm{n}}{(1-\alpha)^2}\)
4 none of these
Complex Numbers and Quadratic Equation

117812 If \(\mathrm{z}_{\mathrm{r}}=\cos \frac{21 \pi}{5}+\mathrm{i} \sin \frac{21 \pi}{5}, \mathrm{r}=0,1,2,3,4\), then \(\mathrm{z}_0\) \(z_1 z_2 z_3 z_4\) is equal to

1 -1
2 0
3 1
4 none of these
Complex Numbers and Quadratic Equation

117886 The equation \(|\mathbf{z}-\mathbf{i}|=|\mathbf{z}-\mathbf{1}|, \mathbf{i}=\sqrt{-1}\), represents

1 a circle of radius \(\frac{1}{2}\)
2 line passing through the origin with slope 1
3 a circle of radius 1
4 line passing through the origin with slope -1
Complex Numbers and Quadratic Equation

117823 If \((\sqrt{5}+\sqrt{3} i)^{33}=2^{49} z\), then modulus of the complex number \(\mathrm{z}\) is equal to

1 1
2 \(\sqrt{2}\)
3 \(2 \sqrt{2}\)
4 4
Complex Numbers and Quadratic Equation

117810 If \(x^3-6 x^2+12 x+19=0\) and \(\omega\) is a non-real cube root of 1 , then \(x=\)

1 -1
2 \(2-3 \omega\)
3 \(2-3 \omega^2\)
4 (a) or (b) (c)
Complex Numbers and Quadratic Equation

117811 If \(\alpha\) is an \(n^{\text {th }}\) root of unity, other 1 , then \(1+2 \alpha\) \(+3 \alpha^2+\ldots \ldots+n \cdot \alpha^{n-1}\) equals

1 \(\frac{\mathrm{n}}{1-\alpha}\)
2 \(-\frac{\mathrm{n}}{1-\alpha}\)
3 \(-\frac{\mathrm{n}}{(1-\alpha)^2}\)
4 none of these
Complex Numbers and Quadratic Equation

117812 If \(\mathrm{z}_{\mathrm{r}}=\cos \frac{21 \pi}{5}+\mathrm{i} \sin \frac{21 \pi}{5}, \mathrm{r}=0,1,2,3,4\), then \(\mathrm{z}_0\) \(z_1 z_2 z_3 z_4\) is equal to

1 -1
2 0
3 1
4 none of these
Complex Numbers and Quadratic Equation

117886 The equation \(|\mathbf{z}-\mathbf{i}|=|\mathbf{z}-\mathbf{1}|, \mathbf{i}=\sqrt{-1}\), represents

1 a circle of radius \(\frac{1}{2}\)
2 line passing through the origin with slope 1
3 a circle of radius 1
4 line passing through the origin with slope -1
Complex Numbers and Quadratic Equation

117823 If \((\sqrt{5}+\sqrt{3} i)^{33}=2^{49} z\), then modulus of the complex number \(\mathrm{z}\) is equal to

1 1
2 \(\sqrt{2}\)
3 \(2 \sqrt{2}\)
4 4
Complex Numbers and Quadratic Equation

117810 If \(x^3-6 x^2+12 x+19=0\) and \(\omega\) is a non-real cube root of 1 , then \(x=\)

1 -1
2 \(2-3 \omega\)
3 \(2-3 \omega^2\)
4 (a) or (b) (c)
Complex Numbers and Quadratic Equation

117811 If \(\alpha\) is an \(n^{\text {th }}\) root of unity, other 1 , then \(1+2 \alpha\) \(+3 \alpha^2+\ldots \ldots+n \cdot \alpha^{n-1}\) equals

1 \(\frac{\mathrm{n}}{1-\alpha}\)
2 \(-\frac{\mathrm{n}}{1-\alpha}\)
3 \(-\frac{\mathrm{n}}{(1-\alpha)^2}\)
4 none of these
Complex Numbers and Quadratic Equation

117812 If \(\mathrm{z}_{\mathrm{r}}=\cos \frac{21 \pi}{5}+\mathrm{i} \sin \frac{21 \pi}{5}, \mathrm{r}=0,1,2,3,4\), then \(\mathrm{z}_0\) \(z_1 z_2 z_3 z_4\) is equal to

1 -1
2 0
3 1
4 none of these