117739 The locus of the point z=x+ iy satisfying |z−2iz+2i|=1 is
A Given,|z−2iz+2i|=1|z−2iz+2i|=1|x+i(y−2)∣|x+i(y+2)||=1x2+(y−2)2=x2+(y+2)2(y−2)2=(y+2)2y2+4−4y=y2+4+4y8y=0y=0, which is x-axis OrOr
117740 For z≠i, define ω=z+iz−i, then |ω|<1 implies that
D Given,ω=z+iz−i then |ω|<1=|z+i||z−i|<1=|x+iy+ix+iy−i|<1=|x+i(y+1)|<|x+i(y−1)|=x2+(y+1)2<x2+(y−1)2=x2+y2+1+2y<x2+y2+1−2y=4y<0=y<0,⇒Im z<0
117741 If a complex number z satisfies |z2−1|=|z|2+1, then z lies on
B Given,|z2−1|=|z|2+1Put,z=x+iy|x2+i2y2+2xyi−1|=x2+y2+1|(x2−y2−1)+2xyi|=x2+y2+1(x2−y2−1)2+4x2y2=(x2+y2+1)(x2−y2−1)2+4x2y2=(x2+y2+1)2Put x=0, y has some real value which satisfy the equation.∴z lies on imaginary axis.
117742 If a is a complex number and b is a real number then the equation a¯+a+b=0 represents a
A Given a is complex number and b is real number.Let, a=x+iyThen, a¯+a+b=x−iy+x+iy+b=02x+b=0x=−b2It is a straight line.
117743 (sinπ8+icosπ8)8(sinπ8−icosπ8)8
A Given,(sinπ8+icosπ8)8(sinπ8−icosπ8)8=sin8×π8+icos8×π8sin8×π8−icos8×π8=sinπ+icosπsinπ−icosπ=0+i(−1)0−i(−1)=−ii=−1