Representation of Complex Numbers in 2-D
Complex Numbers and Quadratic Equation

117694 If \(\left(\frac{1+i}{1-i}\right)^x=1\) then

1 \(x=4 n+1 ; n \in N\)
2 \(x=2 n+1 ; n \in N\)
3 \(x=2 n ; n \in N\)
4 \(x=4 n ; n \in N\)
Complex Numbers and Quadratic Equation

117695 If \((x+i y)^{1 / 3}=a+i b\), then \(\frac{x}{a}+\frac{y}{b}=\)

1 \(\mathrm{ab}\)
2 \(4 \mathrm{ab}\)
3 \(4\left(a^2-b^2\right)\)
4 \(4\left(a^2+b^2\right)\)
Complex Numbers and Quadratic Equation

117696 Let \(z_1\) and \(z_2\) be nth roots of unity which subtend a right angle at the origin. Then \(n\) must be of the form :

1 \(4 \mathrm{k}+3\)
2 \(4 \mathrm{k}\)
3 \(4 \mathrm{k}+3\)
4 \(4 \mathrm{k}+2\)
Complex Numbers and Quadratic Equation

117697 If the imaginary part of \(\frac{2+i}{a i-1}\) is zero, where a is a real number, then the value of a is equal to

1 \(\frac{1}{2}\)
2 2
3 \(-\frac{1}{2}\)
4 -2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117694 If \(\left(\frac{1+i}{1-i}\right)^x=1\) then

1 \(x=4 n+1 ; n \in N\)
2 \(x=2 n+1 ; n \in N\)
3 \(x=2 n ; n \in N\)
4 \(x=4 n ; n \in N\)
Complex Numbers and Quadratic Equation

117695 If \((x+i y)^{1 / 3}=a+i b\), then \(\frac{x}{a}+\frac{y}{b}=\)

1 \(\mathrm{ab}\)
2 \(4 \mathrm{ab}\)
3 \(4\left(a^2-b^2\right)\)
4 \(4\left(a^2+b^2\right)\)
Complex Numbers and Quadratic Equation

117696 Let \(z_1\) and \(z_2\) be nth roots of unity which subtend a right angle at the origin. Then \(n\) must be of the form :

1 \(4 \mathrm{k}+3\)
2 \(4 \mathrm{k}\)
3 \(4 \mathrm{k}+3\)
4 \(4 \mathrm{k}+2\)
Complex Numbers and Quadratic Equation

117697 If the imaginary part of \(\frac{2+i}{a i-1}\) is zero, where a is a real number, then the value of a is equal to

1 \(\frac{1}{2}\)
2 2
3 \(-\frac{1}{2}\)
4 -2
Complex Numbers and Quadratic Equation

117694 If \(\left(\frac{1+i}{1-i}\right)^x=1\) then

1 \(x=4 n+1 ; n \in N\)
2 \(x=2 n+1 ; n \in N\)
3 \(x=2 n ; n \in N\)
4 \(x=4 n ; n \in N\)
Complex Numbers and Quadratic Equation

117695 If \((x+i y)^{1 / 3}=a+i b\), then \(\frac{x}{a}+\frac{y}{b}=\)

1 \(\mathrm{ab}\)
2 \(4 \mathrm{ab}\)
3 \(4\left(a^2-b^2\right)\)
4 \(4\left(a^2+b^2\right)\)
Complex Numbers and Quadratic Equation

117696 Let \(z_1\) and \(z_2\) be nth roots of unity which subtend a right angle at the origin. Then \(n\) must be of the form :

1 \(4 \mathrm{k}+3\)
2 \(4 \mathrm{k}\)
3 \(4 \mathrm{k}+3\)
4 \(4 \mathrm{k}+2\)
Complex Numbers and Quadratic Equation

117697 If the imaginary part of \(\frac{2+i}{a i-1}\) is zero, where a is a real number, then the value of a is equal to

1 \(\frac{1}{2}\)
2 2
3 \(-\frac{1}{2}\)
4 -2
Complex Numbers and Quadratic Equation

117694 If \(\left(\frac{1+i}{1-i}\right)^x=1\) then

1 \(x=4 n+1 ; n \in N\)
2 \(x=2 n+1 ; n \in N\)
3 \(x=2 n ; n \in N\)
4 \(x=4 n ; n \in N\)
Complex Numbers and Quadratic Equation

117695 If \((x+i y)^{1 / 3}=a+i b\), then \(\frac{x}{a}+\frac{y}{b}=\)

1 \(\mathrm{ab}\)
2 \(4 \mathrm{ab}\)
3 \(4\left(a^2-b^2\right)\)
4 \(4\left(a^2+b^2\right)\)
Complex Numbers and Quadratic Equation

117696 Let \(z_1\) and \(z_2\) be nth roots of unity which subtend a right angle at the origin. Then \(n\) must be of the form :

1 \(4 \mathrm{k}+3\)
2 \(4 \mathrm{k}\)
3 \(4 \mathrm{k}+3\)
4 \(4 \mathrm{k}+2\)
Complex Numbers and Quadratic Equation

117697 If the imaginary part of \(\frac{2+i}{a i-1}\) is zero, where a is a real number, then the value of a is equal to

1 \(\frac{1}{2}\)
2 2
3 \(-\frac{1}{2}\)
4 -2