Representation of Complex Numbers in 2-D
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117698 If \(n\) is a positive integer greater than unity and \(Z\) is a complex number satisfying the equation \(Z^{\mathbf{n}}=(\mathbf{1}+\mathbf{Z})^{\mathbf{n}}\) then

1 \(\operatorname{Re}(Z)>0\)
2 \(\operatorname{Re} Z=0\)
3 \(\operatorname{Re}(Z)=\operatorname{Im}(Z)\)
4 \(\operatorname{Re}(Z)\lt 0\)
Complex Numbers and Quadratic Equation

117699 If \(z(\neq-1)\) is a complex number such that \(\frac{z-1}{z+1}\) is purely imaginary, then \(|z|\) is

1 1
2 2
3 3
4 5
Complex Numbers and Quadratic Equation

117700 If \(z=a+i b\) then \(i \log \left(\frac{\bar{z}}{z}\right)\) is equal to

1 \(-2 \tan ^{-1}\left(\frac{b}{a}\right)\)
2 \(2 \tan ^{-1}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\)
3 \(2 \mathrm{i} \tan ^{-1}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\)
4 \(-2 i \tan ^{-1}\left(\frac{b}{a}\right)\)
Complex Numbers and Quadratic Equation

117701 If \(\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=-2\), then the locus of the point representing \(\mathrm{z}\) in the complex plane is

1 a circle
2 a straight line
3 a parabola
4 None of these
Complex Numbers and Quadratic Equation

117698 If \(n\) is a positive integer greater than unity and \(Z\) is a complex number satisfying the equation \(Z^{\mathbf{n}}=(\mathbf{1}+\mathbf{Z})^{\mathbf{n}}\) then

1 \(\operatorname{Re}(Z)>0\)
2 \(\operatorname{Re} Z=0\)
3 \(\operatorname{Re}(Z)=\operatorname{Im}(Z)\)
4 \(\operatorname{Re}(Z)\lt 0\)
Complex Numbers and Quadratic Equation

117699 If \(z(\neq-1)\) is a complex number such that \(\frac{z-1}{z+1}\) is purely imaginary, then \(|z|\) is

1 1
2 2
3 3
4 5
Complex Numbers and Quadratic Equation

117700 If \(z=a+i b\) then \(i \log \left(\frac{\bar{z}}{z}\right)\) is equal to

1 \(-2 \tan ^{-1}\left(\frac{b}{a}\right)\)
2 \(2 \tan ^{-1}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\)
3 \(2 \mathrm{i} \tan ^{-1}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\)
4 \(-2 i \tan ^{-1}\left(\frac{b}{a}\right)\)
Complex Numbers and Quadratic Equation

117701 If \(\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=-2\), then the locus of the point representing \(\mathrm{z}\) in the complex plane is

1 a circle
2 a straight line
3 a parabola
4 None of these
Complex Numbers and Quadratic Equation

117698 If \(n\) is a positive integer greater than unity and \(Z\) is a complex number satisfying the equation \(Z^{\mathbf{n}}=(\mathbf{1}+\mathbf{Z})^{\mathbf{n}}\) then

1 \(\operatorname{Re}(Z)>0\)
2 \(\operatorname{Re} Z=0\)
3 \(\operatorname{Re}(Z)=\operatorname{Im}(Z)\)
4 \(\operatorname{Re}(Z)\lt 0\)
Complex Numbers and Quadratic Equation

117699 If \(z(\neq-1)\) is a complex number such that \(\frac{z-1}{z+1}\) is purely imaginary, then \(|z|\) is

1 1
2 2
3 3
4 5
Complex Numbers and Quadratic Equation

117700 If \(z=a+i b\) then \(i \log \left(\frac{\bar{z}}{z}\right)\) is equal to

1 \(-2 \tan ^{-1}\left(\frac{b}{a}\right)\)
2 \(2 \tan ^{-1}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\)
3 \(2 \mathrm{i} \tan ^{-1}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\)
4 \(-2 i \tan ^{-1}\left(\frac{b}{a}\right)\)
Complex Numbers and Quadratic Equation

117701 If \(\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=-2\), then the locus of the point representing \(\mathrm{z}\) in the complex plane is

1 a circle
2 a straight line
3 a parabola
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Complex Numbers and Quadratic Equation

117698 If \(n\) is a positive integer greater than unity and \(Z\) is a complex number satisfying the equation \(Z^{\mathbf{n}}=(\mathbf{1}+\mathbf{Z})^{\mathbf{n}}\) then

1 \(\operatorname{Re}(Z)>0\)
2 \(\operatorname{Re} Z=0\)
3 \(\operatorname{Re}(Z)=\operatorname{Im}(Z)\)
4 \(\operatorname{Re}(Z)\lt 0\)
Complex Numbers and Quadratic Equation

117699 If \(z(\neq-1)\) is a complex number such that \(\frac{z-1}{z+1}\) is purely imaginary, then \(|z|\) is

1 1
2 2
3 3
4 5
Complex Numbers and Quadratic Equation

117700 If \(z=a+i b\) then \(i \log \left(\frac{\bar{z}}{z}\right)\) is equal to

1 \(-2 \tan ^{-1}\left(\frac{b}{a}\right)\)
2 \(2 \tan ^{-1}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\)
3 \(2 \mathrm{i} \tan ^{-1}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)\)
4 \(-2 i \tan ^{-1}\left(\frac{b}{a}\right)\)
Complex Numbers and Quadratic Equation

117701 If \(\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=-2\), then the locus of the point representing \(\mathrm{z}\) in the complex plane is

1 a circle
2 a straight line
3 a parabola
4 None of these