Limits, Continuity and Differentiability
80311
\(y=\log \tan \frac{x}{2}+\sin ^{-1}(\cos x)\), then \(\frac{d y}{d x}\) is
1 \(\operatorname{cosec} x-1\)
2 \(\operatorname{cosec} x\)
3 \(\operatorname{cosec} x+1\)
4 \(x\)
Explanation:
(A) : Given,
\(\quad y=\log \tan \frac{x}{2}+\sin ^{-1}(\cos x)\)
\(\therefore \quad \frac{d y}{d x}=\frac{1}{\tan \frac{x}{2}} \cdot \frac{d}{d x} \tan \frac{x}{2}+\frac{1}{\sqrt{1-\cos ^{2} x}} \cdot \frac{d}{d x} \cos x\)
\(\frac{d y}{d x}=\frac{1}{2} \frac{\sec ^{2} \frac{x}{2}}{\tan \frac{x}{2}}-\frac{\sin x}{\sqrt{\sin ^{2} x}} \Rightarrow \frac{d y}{d x}=\frac{1}{2} \times \frac{\frac{1}{\cos ^{2} \frac{x}{2}}}{\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}}-1\)
\(\frac{d y}{d x}=\frac{1}{2 \sin \frac{x}{2}} \cdot \cos \frac{x}{2}\)
\(\frac{d y}{d x}=\frac{1}{\sin x}-1 \Rightarrow \frac{d y}{d x}=\operatorname{cosec} x-1\)