Differentiation of Function
Limits, Continuity and Differentiability

80310 If \(x=2 \cos t-\cos 2 t\) and \(y=2 \sin t-\sin 2 t\), then the value of \(\frac{d^{2} y}{d x^{2}}\) at \(t=\frac{\pi}{2}\) is

1 \(\frac{3}{2}\)
2 \(\frac{-5}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{-3}{2}\)
Limits, Continuity and Differentiability

80311 \(y=\log \tan \frac{x}{2}+\sin ^{-1}(\cos x)\), then \(\frac{d y}{d x}\) is

1 \(\operatorname{cosec} x-1\)
2 \(\operatorname{cosec} x\)
3 \(\operatorname{cosec} x+1\)
4 \(x\)
Limits, Continuity and Differentiability

80312 If \(\tan x=\frac{2 t}{1-t^{2}}\) and \(\sin y=\frac{2 t}{1+t^{2}}\), then the value of \(\frac{d y}{d x}\) is

1 1
2 \(\mathrm{t}\)
3 \(\frac{1}{1-\mathrm{t}}\)
4 \(\frac{1}{1+\mathrm{t}}\)
Limits, Continuity and Differentiability

80313 If \(x y=1+\log y\) and \(k \cdot \frac{d y}{d x}+y^{2}=0\), then \(k\) is

1 \(1+x y\)
2 \(\frac{1}{x y-1}\)
3 \(x y-1\)
4 1-2xy
Limits, Continuity and Differentiability

80314 If \(y=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)\), then \(\frac{d y}{d x}\) is

1 \(\frac{1}{2} \mathrm{~s}\)
2 2
3 \(\frac{-1}{2}\)
4 -2
Limits, Continuity and Differentiability

80310 If \(x=2 \cos t-\cos 2 t\) and \(y=2 \sin t-\sin 2 t\), then the value of \(\frac{d^{2} y}{d x^{2}}\) at \(t=\frac{\pi}{2}\) is

1 \(\frac{3}{2}\)
2 \(\frac{-5}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{-3}{2}\)
Limits, Continuity and Differentiability

80311 \(y=\log \tan \frac{x}{2}+\sin ^{-1}(\cos x)\), then \(\frac{d y}{d x}\) is

1 \(\operatorname{cosec} x-1\)
2 \(\operatorname{cosec} x\)
3 \(\operatorname{cosec} x+1\)
4 \(x\)
Limits, Continuity and Differentiability

80312 If \(\tan x=\frac{2 t}{1-t^{2}}\) and \(\sin y=\frac{2 t}{1+t^{2}}\), then the value of \(\frac{d y}{d x}\) is

1 1
2 \(\mathrm{t}\)
3 \(\frac{1}{1-\mathrm{t}}\)
4 \(\frac{1}{1+\mathrm{t}}\)
Limits, Continuity and Differentiability

80313 If \(x y=1+\log y\) and \(k \cdot \frac{d y}{d x}+y^{2}=0\), then \(k\) is

1 \(1+x y\)
2 \(\frac{1}{x y-1}\)
3 \(x y-1\)
4 1-2xy
Limits, Continuity and Differentiability

80314 If \(y=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)\), then \(\frac{d y}{d x}\) is

1 \(\frac{1}{2} \mathrm{~s}\)
2 2
3 \(\frac{-1}{2}\)
4 -2
Limits, Continuity and Differentiability

80310 If \(x=2 \cos t-\cos 2 t\) and \(y=2 \sin t-\sin 2 t\), then the value of \(\frac{d^{2} y}{d x^{2}}\) at \(t=\frac{\pi}{2}\) is

1 \(\frac{3}{2}\)
2 \(\frac{-5}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{-3}{2}\)
Limits, Continuity and Differentiability

80311 \(y=\log \tan \frac{x}{2}+\sin ^{-1}(\cos x)\), then \(\frac{d y}{d x}\) is

1 \(\operatorname{cosec} x-1\)
2 \(\operatorname{cosec} x\)
3 \(\operatorname{cosec} x+1\)
4 \(x\)
Limits, Continuity and Differentiability

80312 If \(\tan x=\frac{2 t}{1-t^{2}}\) and \(\sin y=\frac{2 t}{1+t^{2}}\), then the value of \(\frac{d y}{d x}\) is

1 1
2 \(\mathrm{t}\)
3 \(\frac{1}{1-\mathrm{t}}\)
4 \(\frac{1}{1+\mathrm{t}}\)
Limits, Continuity and Differentiability

80313 If \(x y=1+\log y\) and \(k \cdot \frac{d y}{d x}+y^{2}=0\), then \(k\) is

1 \(1+x y\)
2 \(\frac{1}{x y-1}\)
3 \(x y-1\)
4 1-2xy
Limits, Continuity and Differentiability

80314 If \(y=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)\), then \(\frac{d y}{d x}\) is

1 \(\frac{1}{2} \mathrm{~s}\)
2 2
3 \(\frac{-1}{2}\)
4 -2
Limits, Continuity and Differentiability

80310 If \(x=2 \cos t-\cos 2 t\) and \(y=2 \sin t-\sin 2 t\), then the value of \(\frac{d^{2} y}{d x^{2}}\) at \(t=\frac{\pi}{2}\) is

1 \(\frac{3}{2}\)
2 \(\frac{-5}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{-3}{2}\)
Limits, Continuity and Differentiability

80311 \(y=\log \tan \frac{x}{2}+\sin ^{-1}(\cos x)\), then \(\frac{d y}{d x}\) is

1 \(\operatorname{cosec} x-1\)
2 \(\operatorname{cosec} x\)
3 \(\operatorname{cosec} x+1\)
4 \(x\)
Limits, Continuity and Differentiability

80312 If \(\tan x=\frac{2 t}{1-t^{2}}\) and \(\sin y=\frac{2 t}{1+t^{2}}\), then the value of \(\frac{d y}{d x}\) is

1 1
2 \(\mathrm{t}\)
3 \(\frac{1}{1-\mathrm{t}}\)
4 \(\frac{1}{1+\mathrm{t}}\)
Limits, Continuity and Differentiability

80313 If \(x y=1+\log y\) and \(k \cdot \frac{d y}{d x}+y^{2}=0\), then \(k\) is

1 \(1+x y\)
2 \(\frac{1}{x y-1}\)
3 \(x y-1\)
4 1-2xy
Limits, Continuity and Differentiability

80314 If \(y=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)\), then \(\frac{d y}{d x}\) is

1 \(\frac{1}{2} \mathrm{~s}\)
2 2
3 \(\frac{-1}{2}\)
4 -2
Limits, Continuity and Differentiability

80310 If \(x=2 \cos t-\cos 2 t\) and \(y=2 \sin t-\sin 2 t\), then the value of \(\frac{d^{2} y}{d x^{2}}\) at \(t=\frac{\pi}{2}\) is

1 \(\frac{3}{2}\)
2 \(\frac{-5}{2}\)
3 \(\frac{5}{2}\)
4 \(\frac{-3}{2}\)
Limits, Continuity and Differentiability

80311 \(y=\log \tan \frac{x}{2}+\sin ^{-1}(\cos x)\), then \(\frac{d y}{d x}\) is

1 \(\operatorname{cosec} x-1\)
2 \(\operatorname{cosec} x\)
3 \(\operatorname{cosec} x+1\)
4 \(x\)
Limits, Continuity and Differentiability

80312 If \(\tan x=\frac{2 t}{1-t^{2}}\) and \(\sin y=\frac{2 t}{1+t^{2}}\), then the value of \(\frac{d y}{d x}\) is

1 1
2 \(\mathrm{t}\)
3 \(\frac{1}{1-\mathrm{t}}\)
4 \(\frac{1}{1+\mathrm{t}}\)
Limits, Continuity and Differentiability

80313 If \(x y=1+\log y\) and \(k \cdot \frac{d y}{d x}+y^{2}=0\), then \(k\) is

1 \(1+x y\)
2 \(\frac{1}{x y-1}\)
3 \(x y-1\)
4 1-2xy
Limits, Continuity and Differentiability

80314 If \(y=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)\), then \(\frac{d y}{d x}\) is

1 \(\frac{1}{2} \mathrm{~s}\)
2 2
3 \(\frac{-1}{2}\)
4 -2