Differentiation of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80289 If \(\sqrt{x}+\sqrt{y}=\sqrt{x y}\), then \(\frac{d y}{d x}=\)

1 \(\left(\frac{y}{x}\right)^{\frac{3}{2}}\)
2 \(-\left(\frac{y}{x}\right)^{\frac{3}{2}}\)
3 \(-\left(\frac{x}{y}\right)^{\frac{3}{2}}\)
4 \(\left(\frac{x}{y}\right)^{\frac{3}{2}}\)
Limits, Continuity and Differentiability

80290 If \(x^{2}+y^{2}=1\), then \(\frac{d^{2} x}{d y^{2}}=\)

1 \(-\frac{1}{\mathrm{x}^{3}}\)
2 \(-y^{3}\)
3 \(\mathrm{x}^{3}\)
4 \(\mathrm{y}^{3}\)
Limits, Continuity and Differentiability

80291 If \(y=e^{4 x} \cos 5 x\), then \(\frac{d^{2} y}{d x^{2}}=\) at \(x=0\) is

1 -8
2 8
3 -9
4 9
Limits, Continuity and Differentiability

80292 If \(u=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\) and
\(v=\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right) \text {, then } \frac{d u}{d v} \text { at } x=0 \text { is }\)

1 \(\frac{1}{4}\)
2 \(\frac{-1}{8}\)
3 1
4 \(\frac{1}{8}\)
Limits, Continuity and Differentiability

80289 If \(\sqrt{x}+\sqrt{y}=\sqrt{x y}\), then \(\frac{d y}{d x}=\)

1 \(\left(\frac{y}{x}\right)^{\frac{3}{2}}\)
2 \(-\left(\frac{y}{x}\right)^{\frac{3}{2}}\)
3 \(-\left(\frac{x}{y}\right)^{\frac{3}{2}}\)
4 \(\left(\frac{x}{y}\right)^{\frac{3}{2}}\)
Limits, Continuity and Differentiability

80290 If \(x^{2}+y^{2}=1\), then \(\frac{d^{2} x}{d y^{2}}=\)

1 \(-\frac{1}{\mathrm{x}^{3}}\)
2 \(-y^{3}\)
3 \(\mathrm{x}^{3}\)
4 \(\mathrm{y}^{3}\)
Limits, Continuity and Differentiability

80291 If \(y=e^{4 x} \cos 5 x\), then \(\frac{d^{2} y}{d x^{2}}=\) at \(x=0\) is

1 -8
2 8
3 -9
4 9
Limits, Continuity and Differentiability

80292 If \(u=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\) and
\(v=\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right) \text {, then } \frac{d u}{d v} \text { at } x=0 \text { is }\)

1 \(\frac{1}{4}\)
2 \(\frac{-1}{8}\)
3 1
4 \(\frac{1}{8}\)
Limits, Continuity and Differentiability

80289 If \(\sqrt{x}+\sqrt{y}=\sqrt{x y}\), then \(\frac{d y}{d x}=\)

1 \(\left(\frac{y}{x}\right)^{\frac{3}{2}}\)
2 \(-\left(\frac{y}{x}\right)^{\frac{3}{2}}\)
3 \(-\left(\frac{x}{y}\right)^{\frac{3}{2}}\)
4 \(\left(\frac{x}{y}\right)^{\frac{3}{2}}\)
Limits, Continuity and Differentiability

80290 If \(x^{2}+y^{2}=1\), then \(\frac{d^{2} x}{d y^{2}}=\)

1 \(-\frac{1}{\mathrm{x}^{3}}\)
2 \(-y^{3}\)
3 \(\mathrm{x}^{3}\)
4 \(\mathrm{y}^{3}\)
Limits, Continuity and Differentiability

80291 If \(y=e^{4 x} \cos 5 x\), then \(\frac{d^{2} y}{d x^{2}}=\) at \(x=0\) is

1 -8
2 8
3 -9
4 9
Limits, Continuity and Differentiability

80292 If \(u=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\) and
\(v=\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right) \text {, then } \frac{d u}{d v} \text { at } x=0 \text { is }\)

1 \(\frac{1}{4}\)
2 \(\frac{-1}{8}\)
3 1
4 \(\frac{1}{8}\)
Limits, Continuity and Differentiability

80289 If \(\sqrt{x}+\sqrt{y}=\sqrt{x y}\), then \(\frac{d y}{d x}=\)

1 \(\left(\frac{y}{x}\right)^{\frac{3}{2}}\)
2 \(-\left(\frac{y}{x}\right)^{\frac{3}{2}}\)
3 \(-\left(\frac{x}{y}\right)^{\frac{3}{2}}\)
4 \(\left(\frac{x}{y}\right)^{\frac{3}{2}}\)
Limits, Continuity and Differentiability

80290 If \(x^{2}+y^{2}=1\), then \(\frac{d^{2} x}{d y^{2}}=\)

1 \(-\frac{1}{\mathrm{x}^{3}}\)
2 \(-y^{3}\)
3 \(\mathrm{x}^{3}\)
4 \(\mathrm{y}^{3}\)
Limits, Continuity and Differentiability

80291 If \(y=e^{4 x} \cos 5 x\), then \(\frac{d^{2} y}{d x^{2}}=\) at \(x=0\) is

1 -8
2 8
3 -9
4 9
Limits, Continuity and Differentiability

80292 If \(u=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\) and
\(v=\tan ^{-1}\left(\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}\right) \text {, then } \frac{d u}{d v} \text { at } x=0 \text { is }\)

1 \(\frac{1}{4}\)
2 \(\frac{-1}{8}\)
3 1
4 \(\frac{1}{8}\)