Differentiation of Function
Limits, Continuity and Differentiability

80273 If y=log[sec(ex)] then dydx=

1 xtan(ex)ex
2 extan(ex)
3 extan(ex)
4 xtan(ex)ex
Limits, Continuity and Differentiability

80274 If y=tan1(secx+tanx), then dydx=

1 12
2 1
3 12
4 -1
Limits, Continuity and Differentiability

80275 If y=3e5x+5e3x, then d2ydx28dydx=

1 10y
2 15y
3 15y
4 10y
Limits, Continuity and Differentiability

80272 If x=sin1(cosθ) and y=tan1θ, then dydx=

1 11+θ2
2 1+θ2
3 11+θ2
4 (1+θ2)
Limits, Continuity and Differentiability

80273 If y=log[sec(ex)] then dydx=

1 xtan(ex)ex
2 extan(ex)
3 extan(ex)
4 xtan(ex)ex
Limits, Continuity and Differentiability

80274 If y=tan1(secx+tanx), then dydx=

1 12
2 1
3 12
4 -1
Limits, Continuity and Differentiability

80275 If y=3e5x+5e3x, then d2ydx28dydx=

1 10y
2 15y
3 15y
4 10y
Limits, Continuity and Differentiability

80272 If x=sin1(cosθ) and y=tan1θ, then dydx=

1 11+θ2
2 1+θ2
3 11+θ2
4 (1+θ2)
Limits, Continuity and Differentiability

80273 If y=log[sec(ex)] then dydx=

1 xtan(ex)ex
2 extan(ex)
3 extan(ex)
4 xtan(ex)ex
Limits, Continuity and Differentiability

80274 If y=tan1(secx+tanx), then dydx=

1 12
2 1
3 12
4 -1
Limits, Continuity and Differentiability

80275 If y=3e5x+5e3x, then d2ydx28dydx=

1 10y
2 15y
3 15y
4 10y
Limits, Continuity and Differentiability

80272 If x=sin1(cosθ) and y=tan1θ, then dydx=

1 11+θ2
2 1+θ2
3 11+θ2
4 (1+θ2)
Limits, Continuity and Differentiability

80273 If y=log[sec(ex)] then dydx=

1 xtan(ex)ex
2 extan(ex)
3 extan(ex)
4 xtan(ex)ex
Limits, Continuity and Differentiability

80274 If y=tan1(secx+tanx), then dydx=

1 12
2 1
3 12
4 -1
Limits, Continuity and Differentiability

80275 If y=3e5x+5e3x, then d2ydx28dydx=

1 10y
2 15y
3 15y
4 10y