Differentiation of Function
Limits, Continuity and Differentiability

80276 If \(\tan u=\sqrt{\frac{1-x}{1+x}}, \cos v=4 x^{3}-3 x\), then \(\frac{d u}{d v}=\)

1 2
2 \(\frac{1}{6}\)
3 1
4 \(\frac{1}{2}\)
Limits, Continuity and Differentiability

80277 If \(y=\left(\frac{x^{2}}{x+1}\right)^{x}\) and \(\frac{d y}{d x}=y\left[g(x)+\log \left(\frac{x^{2}}{x+1}\right)\right]\), then \(g(x)=\)

1 \(\frac{x^{2}}{x+1}\)
2 \(\frac{x-1}{x+2}\)
3 \(\frac{x+2}{x+1}\)
4 \(x \log \left(\frac{x^{2}}{x+1}\right)\)
Limits, Continuity and Differentiability

80278 If \(y=\tan ^{-1}\left(\frac{\sin 2 x}{1+\cos 2 x}\right)\), then \(\frac{d y}{d x}=\)

1 2
2 -1
3 0
4 1
Limits, Continuity and Differentiability

80279 If \(x^{2}+y^{2}=t+\frac{1}{t}, x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}}\), then \(\frac{d y}{d x}=\)

1 \(-\frac{x}{y}\)
2 \(-\frac{x}{2 y}\)
3 \(\frac{x}{2 y}\)
4 \(\frac{y}{x}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80276 If \(\tan u=\sqrt{\frac{1-x}{1+x}}, \cos v=4 x^{3}-3 x\), then \(\frac{d u}{d v}=\)

1 2
2 \(\frac{1}{6}\)
3 1
4 \(\frac{1}{2}\)
Limits, Continuity and Differentiability

80277 If \(y=\left(\frac{x^{2}}{x+1}\right)^{x}\) and \(\frac{d y}{d x}=y\left[g(x)+\log \left(\frac{x^{2}}{x+1}\right)\right]\), then \(g(x)=\)

1 \(\frac{x^{2}}{x+1}\)
2 \(\frac{x-1}{x+2}\)
3 \(\frac{x+2}{x+1}\)
4 \(x \log \left(\frac{x^{2}}{x+1}\right)\)
Limits, Continuity and Differentiability

80278 If \(y=\tan ^{-1}\left(\frac{\sin 2 x}{1+\cos 2 x}\right)\), then \(\frac{d y}{d x}=\)

1 2
2 -1
3 0
4 1
Limits, Continuity and Differentiability

80279 If \(x^{2}+y^{2}=t+\frac{1}{t}, x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}}\), then \(\frac{d y}{d x}=\)

1 \(-\frac{x}{y}\)
2 \(-\frac{x}{2 y}\)
3 \(\frac{x}{2 y}\)
4 \(\frac{y}{x}\)
Limits, Continuity and Differentiability

80276 If \(\tan u=\sqrt{\frac{1-x}{1+x}}, \cos v=4 x^{3}-3 x\), then \(\frac{d u}{d v}=\)

1 2
2 \(\frac{1}{6}\)
3 1
4 \(\frac{1}{2}\)
Limits, Continuity and Differentiability

80277 If \(y=\left(\frac{x^{2}}{x+1}\right)^{x}\) and \(\frac{d y}{d x}=y\left[g(x)+\log \left(\frac{x^{2}}{x+1}\right)\right]\), then \(g(x)=\)

1 \(\frac{x^{2}}{x+1}\)
2 \(\frac{x-1}{x+2}\)
3 \(\frac{x+2}{x+1}\)
4 \(x \log \left(\frac{x^{2}}{x+1}\right)\)
Limits, Continuity and Differentiability

80278 If \(y=\tan ^{-1}\left(\frac{\sin 2 x}{1+\cos 2 x}\right)\), then \(\frac{d y}{d x}=\)

1 2
2 -1
3 0
4 1
Limits, Continuity and Differentiability

80279 If \(x^{2}+y^{2}=t+\frac{1}{t}, x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}}\), then \(\frac{d y}{d x}=\)

1 \(-\frac{x}{y}\)
2 \(-\frac{x}{2 y}\)
3 \(\frac{x}{2 y}\)
4 \(\frac{y}{x}\)
Limits, Continuity and Differentiability

80276 If \(\tan u=\sqrt{\frac{1-x}{1+x}}, \cos v=4 x^{3}-3 x\), then \(\frac{d u}{d v}=\)

1 2
2 \(\frac{1}{6}\)
3 1
4 \(\frac{1}{2}\)
Limits, Continuity and Differentiability

80277 If \(y=\left(\frac{x^{2}}{x+1}\right)^{x}\) and \(\frac{d y}{d x}=y\left[g(x)+\log \left(\frac{x^{2}}{x+1}\right)\right]\), then \(g(x)=\)

1 \(\frac{x^{2}}{x+1}\)
2 \(\frac{x-1}{x+2}\)
3 \(\frac{x+2}{x+1}\)
4 \(x \log \left(\frac{x^{2}}{x+1}\right)\)
Limits, Continuity and Differentiability

80278 If \(y=\tan ^{-1}\left(\frac{\sin 2 x}{1+\cos 2 x}\right)\), then \(\frac{d y}{d x}=\)

1 2
2 -1
3 0
4 1
Limits, Continuity and Differentiability

80279 If \(x^{2}+y^{2}=t+\frac{1}{t}, x^{4}+y^{4}=t^{2}+\frac{1}{t^{2}}\), then \(\frac{d y}{d x}=\)

1 \(-\frac{x}{y}\)
2 \(-\frac{x}{2 y}\)
3 \(\frac{x}{2 y}\)
4 \(\frac{y}{x}\)