80254 For constant a,ddx(xx+xa+ax+aa) is
(B) : Given,ddx(xx+xa+ax+aa)Let, y=xxTaking log both sides.logy=xlogxDifferentiating both sides w.r.t. x1ydydx=x1x+logx.1dydx=y[1+logx]dydx=xx[1+logx]Then,ddx(xx+xa+ax+aa)=xx[1+logx]+axa−1+axloga+0=xx[1+logx]+axa−1+axloga
80255 If y=(cosx2)2, then dydx is equal to
(C) : Given,y=(cosx2)2Differentiating both sides w.r.t. x, we getdydx=2cosx2(−sinx2)⋅2xdydx=−2x(2sinx2⋅cosx2)⇒dydx=−2xsin2x2
80256 The value of C in mean value theorem for the function f(x)=x2 in [2,4] is
(D) : Given,f(x)=x2f′(x)=ddxx2f′(x)=2xFrom mean value therefore,f′(C)=f( b)−f(a)b−aWhere, a=2 and b=4Now, f(2)=22=4f(4)=42=16Then,2C=f(4)−f(2)4−2⇒2C=16−42⇒C=3
80257 If log10(x3−y3x3+y3)=2, then dydx=
(D) : Given,log10(x3−y3x3+y3)=2We know that,logba=ca=bcThen,x3−y3x3+y3=102x3−y3=100(x3+y3)x3−y3=100x3+100y3−99x3=101y3Differentiating both sides w.r.t x,−99×3x2=101×3y2dydx101y2dydx=−99x2Multiplying by x both sides,101xy2dydx=−99x3dydx=−99x3101xy2On putting the value (−99x3=101y3) in above equation.dydx=101y3101xy2⇒dydx=yx