Differentiation of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80258 If \(y=\left(\tan ^{-1} x\right)^{2}\), then
\(\left(x^{2}+1\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(x^{2}+1\right) \frac{d y}{d x}=\)

1 4
2 2
3 1
4 0
Limits, Continuity and Differentiability

80259 If \(x=e^{\theta}(\sin \theta-\cos \theta), y=e^{\theta}(\sin \theta+\cos \theta)\), then then \(\frac{\mathrm{dy}}{\mathrm{dx}}\) at \(\theta=\frac{\pi}{4}\) is

1 1
2 0
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
Limits, Continuity and Differentiability

80260 If \(f(x)=\cos ^{-1}\left[\frac{1-(\log x)^{2}}{1+(\log x)^{2}}\right]\), then \(f^{\prime}(e)=\)

1 \(\frac{2}{\mathrm{e}}\)
2 \(\frac{1}{\mathrm{e}}\)
3 \(\frac{2}{\mathrm{e}^{2}}\)
4 1
Limits, Continuity and Differentiability

80261 Derivative of \(\log _{\mathrm{e}^{2}}(\log x)\) with respect to \(x\) is

1 \(\frac{2}{\log x}\)
2 \(\frac{2}{x \log x}\)
3 \(\frac{1}{x \log x^{2}}\)
4 \(\frac{1}{x \log x}\)
Limits, Continuity and Differentiability

80258 If \(y=\left(\tan ^{-1} x\right)^{2}\), then
\(\left(x^{2}+1\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(x^{2}+1\right) \frac{d y}{d x}=\)

1 4
2 2
3 1
4 0
Limits, Continuity and Differentiability

80259 If \(x=e^{\theta}(\sin \theta-\cos \theta), y=e^{\theta}(\sin \theta+\cos \theta)\), then then \(\frac{\mathrm{dy}}{\mathrm{dx}}\) at \(\theta=\frac{\pi}{4}\) is

1 1
2 0
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
Limits, Continuity and Differentiability

80260 If \(f(x)=\cos ^{-1}\left[\frac{1-(\log x)^{2}}{1+(\log x)^{2}}\right]\), then \(f^{\prime}(e)=\)

1 \(\frac{2}{\mathrm{e}}\)
2 \(\frac{1}{\mathrm{e}}\)
3 \(\frac{2}{\mathrm{e}^{2}}\)
4 1
Limits, Continuity and Differentiability

80261 Derivative of \(\log _{\mathrm{e}^{2}}(\log x)\) with respect to \(x\) is

1 \(\frac{2}{\log x}\)
2 \(\frac{2}{x \log x}\)
3 \(\frac{1}{x \log x^{2}}\)
4 \(\frac{1}{x \log x}\)
Limits, Continuity and Differentiability

80258 If \(y=\left(\tan ^{-1} x\right)^{2}\), then
\(\left(x^{2}+1\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(x^{2}+1\right) \frac{d y}{d x}=\)

1 4
2 2
3 1
4 0
Limits, Continuity and Differentiability

80259 If \(x=e^{\theta}(\sin \theta-\cos \theta), y=e^{\theta}(\sin \theta+\cos \theta)\), then then \(\frac{\mathrm{dy}}{\mathrm{dx}}\) at \(\theta=\frac{\pi}{4}\) is

1 1
2 0
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
Limits, Continuity and Differentiability

80260 If \(f(x)=\cos ^{-1}\left[\frac{1-(\log x)^{2}}{1+(\log x)^{2}}\right]\), then \(f^{\prime}(e)=\)

1 \(\frac{2}{\mathrm{e}}\)
2 \(\frac{1}{\mathrm{e}}\)
3 \(\frac{2}{\mathrm{e}^{2}}\)
4 1
Limits, Continuity and Differentiability

80261 Derivative of \(\log _{\mathrm{e}^{2}}(\log x)\) with respect to \(x\) is

1 \(\frac{2}{\log x}\)
2 \(\frac{2}{x \log x}\)
3 \(\frac{1}{x \log x^{2}}\)
4 \(\frac{1}{x \log x}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80258 If \(y=\left(\tan ^{-1} x\right)^{2}\), then
\(\left(x^{2}+1\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(x^{2}+1\right) \frac{d y}{d x}=\)

1 4
2 2
3 1
4 0
Limits, Continuity and Differentiability

80259 If \(x=e^{\theta}(\sin \theta-\cos \theta), y=e^{\theta}(\sin \theta+\cos \theta)\), then then \(\frac{\mathrm{dy}}{\mathrm{dx}}\) at \(\theta=\frac{\pi}{4}\) is

1 1
2 0
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
Limits, Continuity and Differentiability

80260 If \(f(x)=\cos ^{-1}\left[\frac{1-(\log x)^{2}}{1+(\log x)^{2}}\right]\), then \(f^{\prime}(e)=\)

1 \(\frac{2}{\mathrm{e}}\)
2 \(\frac{1}{\mathrm{e}}\)
3 \(\frac{2}{\mathrm{e}^{2}}\)
4 1
Limits, Continuity and Differentiability

80261 Derivative of \(\log _{\mathrm{e}^{2}}(\log x)\) with respect to \(x\) is

1 \(\frac{2}{\log x}\)
2 \(\frac{2}{x \log x}\)
3 \(\frac{1}{x \log x^{2}}\)
4 \(\frac{1}{x \log x}\)