Limits, Continuity and Differentiability
80266
If \(y=\log \left|\frac{x+\sqrt{x^{2}+25}}{\sqrt{x^{2}+25}-x}\right|\), then \(\frac{d y}{d x}=\)
1 \(\frac{-1}{\sqrt{\mathrm{x}^{2}+25}}\)
2 \(\frac{-2}{\sqrt{\mathrm{x}^{2}+25}}\)
3 \(\frac{2}{\sqrt{\mathrm{x}^{2}+25}}\)
4 \(\frac{1}{\sqrt{\mathrm{x}^{2}+25}}\)
Explanation:
(C)Given,
\(y=\log \left|\frac{x+\sqrt{x^{2}+25}}{\sqrt{x^{2}+25}-\mathrm{x}}\right|\)
\(y=\log \left|\frac{\left(x+\sqrt{x^{2}+25}\right)}{\left(\sqrt{x^{2}+25}-\mathrm{x}\right)} \times \frac{\left(\sqrt{x^{2}+25}+\mathrm{x}\right)}{\left(\sqrt{\mathrm{x}^{2}+25}+\mathrm{x}\right)}\right|\)
\(\mathrm{y}=\log \left|\frac{\left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+25}\right)^{2}}{\left(\sqrt{\mathrm{x}^{2}+25}\right)^{2}-(\mathrm{x})^{2}}\right|\)
\(\mathrm{y}=\log \left|\frac{\mathrm{x}^{2}+\mathrm{x}^{2}+25+2 \mathrm{x} \sqrt{\mathrm{x}^{2}+25}}{\mathrm{x}^{2}+25-\mathrm{x}^{2}}\right|\)
\(\mathrm{y}=\log \left|\frac{2 \mathrm{x}^{2}+25+2 \mathrm{x} \sqrt{\mathrm{x}^{2}+25}}{25}\right|=\log \left|\frac{\left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+25}\right)^{2} \mid}{25}\right|\)
\(\mathrm{y}=\log \left|\left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+25}\right)^{2}\right|-\log 25\)
\(\mathrm{y}=2 \log \left|\mathrm{x}+\sqrt{\mathrm{x}^{2}+25}\right|-\log 25\)
\(\therefore \frac{2}{\mathrm{dx}}=\frac{2}{\mathrm{x}+\sqrt{\mathrm{x}^{2}+25}} \times\left[1+\frac{2 \mathrm{x}}{2 \sqrt{\mathrm{x}^{2}+25}}\right]-0\)
\(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+25}\right)} \times \frac{\left(\sqrt{\mathrm{x}^{2}+25}+\mathrm{x}\right)}{\sqrt{\mathrm{x}^{2}+25}}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\sqrt{\mathrm{x}^{2}+25}}\)