Differentiation of Function
Limits, Continuity and Differentiability

80254 For constant \(a, \frac{d}{d x}\left(x^{x}+x^{a}+a^{x}+a^{a}\right)\) is

1 \(x^{x}(1+\log x)+a x^{a-1}\)
2 \(x^{x}(1+\log x)+a x^{a-1}+a^{x} \log a\)
3 \(x^{x}(1+\log x)+a^{a}(1+\log x)\)
4 \(x^{x}(1+\log x)+a^{a}(1+\log a)+a^{a-1}\)
Limits, Continuity and Differentiability

80255 If \(y=\left(\cos x^{2}\right)^{2}\), then \(\frac{d y}{d x}\) is equal to

1 \(-4 x \sin 2 x^{2}\)
2 \(-x \sin x^{2}\)
3 \(-2 x \sin 2 x^{2}\)
4 \(-x \cos 2 x^{2}\)
Limits, Continuity and Differentiability

80256 The value of \(\mathrm{C}\) in mean value theorem for the function \(f(x)=x^{2}\) in \([2,4]\) is

1 2
2 4
3 \(\frac{7}{2}\)
4 3
Limits, Continuity and Differentiability

80257 If \(\log _{10}\left(\frac{x^{3}-y^{3}}{x^{3}+y^{3}}\right)=2\), then \(\frac{d y}{d x}=\)

1 \(\frac{x}{y}\)
2 \(-\frac{y}{x}\)
3 \(-\frac{x}{y}\)
4 \(\frac{y}{x}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80254 For constant \(a, \frac{d}{d x}\left(x^{x}+x^{a}+a^{x}+a^{a}\right)\) is

1 \(x^{x}(1+\log x)+a x^{a-1}\)
2 \(x^{x}(1+\log x)+a x^{a-1}+a^{x} \log a\)
3 \(x^{x}(1+\log x)+a^{a}(1+\log x)\)
4 \(x^{x}(1+\log x)+a^{a}(1+\log a)+a^{a-1}\)
Limits, Continuity and Differentiability

80255 If \(y=\left(\cos x^{2}\right)^{2}\), then \(\frac{d y}{d x}\) is equal to

1 \(-4 x \sin 2 x^{2}\)
2 \(-x \sin x^{2}\)
3 \(-2 x \sin 2 x^{2}\)
4 \(-x \cos 2 x^{2}\)
Limits, Continuity and Differentiability

80256 The value of \(\mathrm{C}\) in mean value theorem for the function \(f(x)=x^{2}\) in \([2,4]\) is

1 2
2 4
3 \(\frac{7}{2}\)
4 3
Limits, Continuity and Differentiability

80257 If \(\log _{10}\left(\frac{x^{3}-y^{3}}{x^{3}+y^{3}}\right)=2\), then \(\frac{d y}{d x}=\)

1 \(\frac{x}{y}\)
2 \(-\frac{y}{x}\)
3 \(-\frac{x}{y}\)
4 \(\frac{y}{x}\)
Limits, Continuity and Differentiability

80254 For constant \(a, \frac{d}{d x}\left(x^{x}+x^{a}+a^{x}+a^{a}\right)\) is

1 \(x^{x}(1+\log x)+a x^{a-1}\)
2 \(x^{x}(1+\log x)+a x^{a-1}+a^{x} \log a\)
3 \(x^{x}(1+\log x)+a^{a}(1+\log x)\)
4 \(x^{x}(1+\log x)+a^{a}(1+\log a)+a^{a-1}\)
Limits, Continuity and Differentiability

80255 If \(y=\left(\cos x^{2}\right)^{2}\), then \(\frac{d y}{d x}\) is equal to

1 \(-4 x \sin 2 x^{2}\)
2 \(-x \sin x^{2}\)
3 \(-2 x \sin 2 x^{2}\)
4 \(-x \cos 2 x^{2}\)
Limits, Continuity and Differentiability

80256 The value of \(\mathrm{C}\) in mean value theorem for the function \(f(x)=x^{2}\) in \([2,4]\) is

1 2
2 4
3 \(\frac{7}{2}\)
4 3
Limits, Continuity and Differentiability

80257 If \(\log _{10}\left(\frac{x^{3}-y^{3}}{x^{3}+y^{3}}\right)=2\), then \(\frac{d y}{d x}=\)

1 \(\frac{x}{y}\)
2 \(-\frac{y}{x}\)
3 \(-\frac{x}{y}\)
4 \(\frac{y}{x}\)
Limits, Continuity and Differentiability

80254 For constant \(a, \frac{d}{d x}\left(x^{x}+x^{a}+a^{x}+a^{a}\right)\) is

1 \(x^{x}(1+\log x)+a x^{a-1}\)
2 \(x^{x}(1+\log x)+a x^{a-1}+a^{x} \log a\)
3 \(x^{x}(1+\log x)+a^{a}(1+\log x)\)
4 \(x^{x}(1+\log x)+a^{a}(1+\log a)+a^{a-1}\)
Limits, Continuity and Differentiability

80255 If \(y=\left(\cos x^{2}\right)^{2}\), then \(\frac{d y}{d x}\) is equal to

1 \(-4 x \sin 2 x^{2}\)
2 \(-x \sin x^{2}\)
3 \(-2 x \sin 2 x^{2}\)
4 \(-x \cos 2 x^{2}\)
Limits, Continuity and Differentiability

80256 The value of \(\mathrm{C}\) in mean value theorem for the function \(f(x)=x^{2}\) in \([2,4]\) is

1 2
2 4
3 \(\frac{7}{2}\)
4 3
Limits, Continuity and Differentiability

80257 If \(\log _{10}\left(\frac{x^{3}-y^{3}}{x^{3}+y^{3}}\right)=2\), then \(\frac{d y}{d x}=\)

1 \(\frac{x}{y}\)
2 \(-\frac{y}{x}\)
3 \(-\frac{x}{y}\)
4 \(\frac{y}{x}\)