Differentiation of Function
Limits, Continuity and Differentiability

80272 If \(x=\sin ^{-1}(\cos \theta)\) and \(y=\tan ^{-1} \theta\), then \(\frac{d y}{d x}=\)

1 \(\frac{1}{1+\theta^{2}}\)
2 \(1+\theta^{2}\)
3 \(\frac{-1}{1+\theta^{2}}\)
4 \(-\left(1+\theta^{2}\right)\)
Limits, Continuity and Differentiability

80273 If \(y=\log \left[\sec \left(e^{x}\right)\right]\) then \(\frac{d y}{d x}=\)

1 \(\frac{x \tan \left(e^{x}\right)}{e^{x}}\)
2 \(-e^{x} \tan \left(e^{x}\right)\)
3 \(\mathrm{e}^{\mathrm{x}} \tan \left(\mathrm{e}^{\mathrm{x}}\right)\)
4 \(\frac{-\mathrm{x} \tan \left(\mathrm{e}^{\mathrm{x}}\right)}{\mathrm{e}^{\mathrm{x}}}\)
Limits, Continuity and Differentiability

80274 If \(y=\tan ^{-1}(\sec x+\tan x)\), then \(\frac{d y}{d x}=\)

1 \(\frac{-1}{2}\)
2 1
3 \(\frac{1}{2}\)
4 -1
Limits, Continuity and Differentiability

80275 If \(y=3 e^{5 x}+5 e^{3 x}\), then \(\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}=\)

1 \(-10 y\)
2 \(-15 y\)
3 \(15 \mathrm{y}\)
4 \(10 \mathrm{y}\)
Limits, Continuity and Differentiability

80272 If \(x=\sin ^{-1}(\cos \theta)\) and \(y=\tan ^{-1} \theta\), then \(\frac{d y}{d x}=\)

1 \(\frac{1}{1+\theta^{2}}\)
2 \(1+\theta^{2}\)
3 \(\frac{-1}{1+\theta^{2}}\)
4 \(-\left(1+\theta^{2}\right)\)
Limits, Continuity and Differentiability

80273 If \(y=\log \left[\sec \left(e^{x}\right)\right]\) then \(\frac{d y}{d x}=\)

1 \(\frac{x \tan \left(e^{x}\right)}{e^{x}}\)
2 \(-e^{x} \tan \left(e^{x}\right)\)
3 \(\mathrm{e}^{\mathrm{x}} \tan \left(\mathrm{e}^{\mathrm{x}}\right)\)
4 \(\frac{-\mathrm{x} \tan \left(\mathrm{e}^{\mathrm{x}}\right)}{\mathrm{e}^{\mathrm{x}}}\)
Limits, Continuity and Differentiability

80274 If \(y=\tan ^{-1}(\sec x+\tan x)\), then \(\frac{d y}{d x}=\)

1 \(\frac{-1}{2}\)
2 1
3 \(\frac{1}{2}\)
4 -1
Limits, Continuity and Differentiability

80275 If \(y=3 e^{5 x}+5 e^{3 x}\), then \(\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}=\)

1 \(-10 y\)
2 \(-15 y\)
3 \(15 \mathrm{y}\)
4 \(10 \mathrm{y}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80272 If \(x=\sin ^{-1}(\cos \theta)\) and \(y=\tan ^{-1} \theta\), then \(\frac{d y}{d x}=\)

1 \(\frac{1}{1+\theta^{2}}\)
2 \(1+\theta^{2}\)
3 \(\frac{-1}{1+\theta^{2}}\)
4 \(-\left(1+\theta^{2}\right)\)
Limits, Continuity and Differentiability

80273 If \(y=\log \left[\sec \left(e^{x}\right)\right]\) then \(\frac{d y}{d x}=\)

1 \(\frac{x \tan \left(e^{x}\right)}{e^{x}}\)
2 \(-e^{x} \tan \left(e^{x}\right)\)
3 \(\mathrm{e}^{\mathrm{x}} \tan \left(\mathrm{e}^{\mathrm{x}}\right)\)
4 \(\frac{-\mathrm{x} \tan \left(\mathrm{e}^{\mathrm{x}}\right)}{\mathrm{e}^{\mathrm{x}}}\)
Limits, Continuity and Differentiability

80274 If \(y=\tan ^{-1}(\sec x+\tan x)\), then \(\frac{d y}{d x}=\)

1 \(\frac{-1}{2}\)
2 1
3 \(\frac{1}{2}\)
4 -1
Limits, Continuity and Differentiability

80275 If \(y=3 e^{5 x}+5 e^{3 x}\), then \(\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}=\)

1 \(-10 y\)
2 \(-15 y\)
3 \(15 \mathrm{y}\)
4 \(10 \mathrm{y}\)
Limits, Continuity and Differentiability

80272 If \(x=\sin ^{-1}(\cos \theta)\) and \(y=\tan ^{-1} \theta\), then \(\frac{d y}{d x}=\)

1 \(\frac{1}{1+\theta^{2}}\)
2 \(1+\theta^{2}\)
3 \(\frac{-1}{1+\theta^{2}}\)
4 \(-\left(1+\theta^{2}\right)\)
Limits, Continuity and Differentiability

80273 If \(y=\log \left[\sec \left(e^{x}\right)\right]\) then \(\frac{d y}{d x}=\)

1 \(\frac{x \tan \left(e^{x}\right)}{e^{x}}\)
2 \(-e^{x} \tan \left(e^{x}\right)\)
3 \(\mathrm{e}^{\mathrm{x}} \tan \left(\mathrm{e}^{\mathrm{x}}\right)\)
4 \(\frac{-\mathrm{x} \tan \left(\mathrm{e}^{\mathrm{x}}\right)}{\mathrm{e}^{\mathrm{x}}}\)
Limits, Continuity and Differentiability

80274 If \(y=\tan ^{-1}(\sec x+\tan x)\), then \(\frac{d y}{d x}=\)

1 \(\frac{-1}{2}\)
2 1
3 \(\frac{1}{2}\)
4 -1
Limits, Continuity and Differentiability

80275 If \(y=3 e^{5 x}+5 e^{3 x}\), then \(\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}=\)

1 \(-10 y\)
2 \(-15 y\)
3 \(15 \mathrm{y}\)
4 \(10 \mathrm{y}\)