80245
\(f: R \rightarrow R\) is a function such that
\(|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{y})| \leq \frac{\mathbf{1}}{\mathbf{2}}|\mathbf{x}-\mathbf{y}| \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\) and \(\mathbf{f}^{\prime}(\mathbf{x}) \geq \frac{1}{2}\) \(\forall \mathbf{x} \in \mathbf{R}, \mathbf{f}(1)=\frac{1}{2}\) Then the number of points of intersection of curve \(y=f(x)\) and the curve \(y=\) \(x^{2}-2 x-5\) is
80245
\(f: R \rightarrow R\) is a function such that
\(|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{y})| \leq \frac{\mathbf{1}}{\mathbf{2}}|\mathbf{x}-\mathbf{y}| \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\) and \(\mathbf{f}^{\prime}(\mathbf{x}) \geq \frac{1}{2}\) \(\forall \mathbf{x} \in \mathbf{R}, \mathbf{f}(1)=\frac{1}{2}\) Then the number of points of intersection of curve \(y=f(x)\) and the curve \(y=\) \(x^{2}-2 x-5\) is
80245
\(f: R \rightarrow R\) is a function such that
\(|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{y})| \leq \frac{\mathbf{1}}{\mathbf{2}}|\mathbf{x}-\mathbf{y}| \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\) and \(\mathbf{f}^{\prime}(\mathbf{x}) \geq \frac{1}{2}\) \(\forall \mathbf{x} \in \mathbf{R}, \mathbf{f}(1)=\frac{1}{2}\) Then the number of points of intersection of curve \(y=f(x)\) and the curve \(y=\) \(x^{2}-2 x-5\) is
80245
\(f: R \rightarrow R\) is a function such that
\(|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{y})| \leq \frac{\mathbf{1}}{\mathbf{2}}|\mathbf{x}-\mathbf{y}| \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\) and \(\mathbf{f}^{\prime}(\mathbf{x}) \geq \frac{1}{2}\) \(\forall \mathbf{x} \in \mathbf{R}, \mathbf{f}(1)=\frac{1}{2}\) Then the number of points of intersection of curve \(y=f(x)\) and the curve \(y=\) \(x^{2}-2 x-5\) is
80245
\(f: R \rightarrow R\) is a function such that
\(|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{y})| \leq \frac{\mathbf{1}}{\mathbf{2}}|\mathbf{x}-\mathbf{y}| \forall \mathbf{x}, \mathbf{y} \in \mathbf{R}\) and \(\mathbf{f}^{\prime}(\mathbf{x}) \geq \frac{1}{2}\) \(\forall \mathbf{x} \in \mathbf{R}, \mathbf{f}(1)=\frac{1}{2}\) Then the number of points of intersection of curve \(y=f(x)\) and the curve \(y=\) \(x^{2}-2 x-5\) is