80248
Let \(g:[-2,2] \rightarrow \mathbb{R}\) and \(f:[-2,2] \rightarrow \mathbb{R}\)
Are two functions defined as
\(g(x)=\left\{\begin{array}{ll}-1 \text { if }-2 \leq x\lt 0 \\ x^{2}-1, \text { if } 0 \leq x \leq 2\end{array}\right.\) and
\(\mathbf{f}(\mathbf{x})=|\mathbf{g}(\mathbf{x})|+\mathbf{g}(|\mathbf{x}|)+2\). In the interval
\((-2,2), f\) is not differentiable at \(x=\)
80248
Let \(g:[-2,2] \rightarrow \mathbb{R}\) and \(f:[-2,2] \rightarrow \mathbb{R}\)
Are two functions defined as
\(g(x)=\left\{\begin{array}{ll}-1 \text { if }-2 \leq x\lt 0 \\ x^{2}-1, \text { if } 0 \leq x \leq 2\end{array}\right.\) and
\(\mathbf{f}(\mathbf{x})=|\mathbf{g}(\mathbf{x})|+\mathbf{g}(|\mathbf{x}|)+2\). In the interval
\((-2,2), f\) is not differentiable at \(x=\)
80248
Let \(g:[-2,2] \rightarrow \mathbb{R}\) and \(f:[-2,2] \rightarrow \mathbb{R}\)
Are two functions defined as
\(g(x)=\left\{\begin{array}{ll}-1 \text { if }-2 \leq x\lt 0 \\ x^{2}-1, \text { if } 0 \leq x \leq 2\end{array}\right.\) and
\(\mathbf{f}(\mathbf{x})=|\mathbf{g}(\mathbf{x})|+\mathbf{g}(|\mathbf{x}|)+2\). In the interval
\((-2,2), f\) is not differentiable at \(x=\)
80248
Let \(g:[-2,2] \rightarrow \mathbb{R}\) and \(f:[-2,2] \rightarrow \mathbb{R}\)
Are two functions defined as
\(g(x)=\left\{\begin{array}{ll}-1 \text { if }-2 \leq x\lt 0 \\ x^{2}-1, \text { if } 0 \leq x \leq 2\end{array}\right.\) and
\(\mathbf{f}(\mathbf{x})=|\mathbf{g}(\mathbf{x})|+\mathbf{g}(|\mathbf{x}|)+2\). In the interval
\((-2,2), f\) is not differentiable at \(x=\)