80211 If y=(1+x1/4)(1+x1/2)(1−x1/4), then dy/dx equals-
(A) : Given,y=(1+x1/4)(1+x1/2)(1−x1/4)y=(1+x1/4)(1−x1/4)(1+x1/2)We know that,(a+b)(a−b)=a2−b2Then,y=[12−(x1/4)2](1+x1/2)y=(1−x1/2)(1+x1/2)y=12−(x1/2)2y=1−xOn differentiating both side,∴dydx=0−1dydx=−1
80212 If f(t)=1−t1+t, then f′(1/t) is equal to
(C) : Given,f(t)=1−t1+tDifferentiating both sides with respect to t,f′(t)=ddt[1−t1+t]=(1+t)(−1)−(1−t)×(1)(1+t)2f′(t)=−1−t−1+t(1+t)2=−2(1+t)2∴f′(1t)=−2(1+1t)2f′(1t)=−2t2(1+t)2
80213 Let f(x+y)=f(x).f(y) for all x,y where f(0)≠0. If f(5)=2 and f′(0)=3, then f′(5) is equal to-
(A) : Given,f(x+y)=f(x)⋅f(y)Put, y=5Then,f(x+5)=f(x)⋅f(5)f(x+5)=2f(x)[∴f(5)=2]On differentiating both sides w.r.t. x,Then,f′(x+5)=2f′(x)Put,x=0f′(0+5)=2f′(0)[∵f′(0)=3]f′(5)=2×3f′(5)=6
80214 Let f(x)=(x5−1)(x3+1), g(x)=(x2−1)(x2−x+1) and let h(x) be such that f(x)=g(x)h(x). Then limx→1h(x) is
(D) : Given,f(x)=(x5−1)(x3+1)g(x)=(x2−1)(x2−x+1)f(x)=g(x)h(x)h(x)=f(x)g(x)limx→1h(x)=limx→1f(x)g(x)limx→1(x5−1)(x3+1)(x2−1)(x2−x+1)limx→1(x5−1)(x+1)(x2+1−x)(x−1)(x+1)(x2+1−x)limx→1x5−15x−1=5[∵limx→axn−anx−a=n]
80215 The number of points, where the function f:R →R,f(x)=|x−1|cos|x−2|sin|x−1|+(x−3)|x2−5x+4|, is NOT differentiable, is :
(C) : f:R→Rf(x)=|x−1|cos|x−2|sin|x−1|+(x−3)|x2−5x+4|=|x−1|cos|x−2|sin|x−1|+(x−3)|x−1||x−4|=|x−1|[cos|x−2|sin|x−1|+(x−3)|x−4|]So, there are only three point x=1,2 and x=4 where f(x) is not differentiable.