Finding Differentiability using Differentiation
Limits, Continuity and Differentiability

80216 Let \(f(x)\) be differentiable in \([2,5]\) and \(f^{\prime}(x) \geq\) \(\mathbf{4} / 3\) for all \(\mathrm{x} \in[2,5]\). If \(\boldsymbol{f}(\mathbf{2})=\mathbf{2}\), then

1 \(f(5) \geq 6\)
2 \(f(5) \geq 14 / 3\)
3 \(f(5) \leq 6\)
4 \(f(5) \leq 14 / 3\)
Limits, Continuity and Differentiability

80217 Suppose \(\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)\) be a differentiable function such that \(5 \mathrm{f}(\mathrm{x}+\mathbf{y})=\mathbf{f}(\mathbf{x}) . \mathbf{f}(\mathbf{y}), \forall \mathrm{x}, \mathrm{y}\) \(\in R\). If \(f(3)=320\), then \(\sum_{n=0}^{5} f(n)\) is equal to :

1 6575
2 6825
3 6875
4 6525
Limits, Continuity and Differentiability

80218 Let \(f, g: R \rightarrow\) be two real valued functions defined as \(f(x)=\left\{\begin{aligned}-|x+3|, x\lt 0 \\ e^{x}, x>0\end{aligned}\right.\) and \(g(x)=\left\{\begin{array}{ll}x^{2}+k_{1} x, x\lt 0 \\ 4 x+k_{2}, x \geq 0\end{array}\right.\), where \(k_{1}\) and \(k_{2}\) are real constants. If (gof) is differentiable at \(x=0\), then (gof) (-4) \(+(\) gof \()(4)\) is equal to :

1 \(4\left(\mathrm{e}^{4}+1\right)\)
2 \(2\left(2 \mathrm{e}^{4}+1\right)\)
3 \(4 \mathrm{e}^{4}\)
4 \(2\left(2 \mathrm{e}^{4}-1\right)\)
Limits, Continuity and Differentiability

80219 The set of all points where the function \(f(x)=\) \(\mathbf{2 x}|\mathbf{x}|\) is differentiable is

1 \((-\infty, \infty)\)
2 \((-\infty, 0) \cup(0, \infty)\)
3 \((0, \infty)\)
4 \([0, \infty)\)
Limits, Continuity and Differentiability

80216 Let \(f(x)\) be differentiable in \([2,5]\) and \(f^{\prime}(x) \geq\) \(\mathbf{4} / 3\) for all \(\mathrm{x} \in[2,5]\). If \(\boldsymbol{f}(\mathbf{2})=\mathbf{2}\), then

1 \(f(5) \geq 6\)
2 \(f(5) \geq 14 / 3\)
3 \(f(5) \leq 6\)
4 \(f(5) \leq 14 / 3\)
Limits, Continuity and Differentiability

80217 Suppose \(\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)\) be a differentiable function such that \(5 \mathrm{f}(\mathrm{x}+\mathbf{y})=\mathbf{f}(\mathbf{x}) . \mathbf{f}(\mathbf{y}), \forall \mathrm{x}, \mathrm{y}\) \(\in R\). If \(f(3)=320\), then \(\sum_{n=0}^{5} f(n)\) is equal to :

1 6575
2 6825
3 6875
4 6525
Limits, Continuity and Differentiability

80218 Let \(f, g: R \rightarrow\) be two real valued functions defined as \(f(x)=\left\{\begin{aligned}-|x+3|, x\lt 0 \\ e^{x}, x>0\end{aligned}\right.\) and \(g(x)=\left\{\begin{array}{ll}x^{2}+k_{1} x, x\lt 0 \\ 4 x+k_{2}, x \geq 0\end{array}\right.\), where \(k_{1}\) and \(k_{2}\) are real constants. If (gof) is differentiable at \(x=0\), then (gof) (-4) \(+(\) gof \()(4)\) is equal to :

1 \(4\left(\mathrm{e}^{4}+1\right)\)
2 \(2\left(2 \mathrm{e}^{4}+1\right)\)
3 \(4 \mathrm{e}^{4}\)
4 \(2\left(2 \mathrm{e}^{4}-1\right)\)
Limits, Continuity and Differentiability

80219 The set of all points where the function \(f(x)=\) \(\mathbf{2 x}|\mathbf{x}|\) is differentiable is

1 \((-\infty, \infty)\)
2 \((-\infty, 0) \cup(0, \infty)\)
3 \((0, \infty)\)
4 \([0, \infty)\)
Limits, Continuity and Differentiability

80216 Let \(f(x)\) be differentiable in \([2,5]\) and \(f^{\prime}(x) \geq\) \(\mathbf{4} / 3\) for all \(\mathrm{x} \in[2,5]\). If \(\boldsymbol{f}(\mathbf{2})=\mathbf{2}\), then

1 \(f(5) \geq 6\)
2 \(f(5) \geq 14 / 3\)
3 \(f(5) \leq 6\)
4 \(f(5) \leq 14 / 3\)
Limits, Continuity and Differentiability

80217 Suppose \(\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)\) be a differentiable function such that \(5 \mathrm{f}(\mathrm{x}+\mathbf{y})=\mathbf{f}(\mathbf{x}) . \mathbf{f}(\mathbf{y}), \forall \mathrm{x}, \mathrm{y}\) \(\in R\). If \(f(3)=320\), then \(\sum_{n=0}^{5} f(n)\) is equal to :

1 6575
2 6825
3 6875
4 6525
Limits, Continuity and Differentiability

80218 Let \(f, g: R \rightarrow\) be two real valued functions defined as \(f(x)=\left\{\begin{aligned}-|x+3|, x\lt 0 \\ e^{x}, x>0\end{aligned}\right.\) and \(g(x)=\left\{\begin{array}{ll}x^{2}+k_{1} x, x\lt 0 \\ 4 x+k_{2}, x \geq 0\end{array}\right.\), where \(k_{1}\) and \(k_{2}\) are real constants. If (gof) is differentiable at \(x=0\), then (gof) (-4) \(+(\) gof \()(4)\) is equal to :

1 \(4\left(\mathrm{e}^{4}+1\right)\)
2 \(2\left(2 \mathrm{e}^{4}+1\right)\)
3 \(4 \mathrm{e}^{4}\)
4 \(2\left(2 \mathrm{e}^{4}-1\right)\)
Limits, Continuity and Differentiability

80219 The set of all points where the function \(f(x)=\) \(\mathbf{2 x}|\mathbf{x}|\) is differentiable is

1 \((-\infty, \infty)\)
2 \((-\infty, 0) \cup(0, \infty)\)
3 \((0, \infty)\)
4 \([0, \infty)\)
Limits, Continuity and Differentiability

80216 Let \(f(x)\) be differentiable in \([2,5]\) and \(f^{\prime}(x) \geq\) \(\mathbf{4} / 3\) for all \(\mathrm{x} \in[2,5]\). If \(\boldsymbol{f}(\mathbf{2})=\mathbf{2}\), then

1 \(f(5) \geq 6\)
2 \(f(5) \geq 14 / 3\)
3 \(f(5) \leq 6\)
4 \(f(5) \leq 14 / 3\)
Limits, Continuity and Differentiability

80217 Suppose \(\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)\) be a differentiable function such that \(5 \mathrm{f}(\mathrm{x}+\mathbf{y})=\mathbf{f}(\mathbf{x}) . \mathbf{f}(\mathbf{y}), \forall \mathrm{x}, \mathrm{y}\) \(\in R\). If \(f(3)=320\), then \(\sum_{n=0}^{5} f(n)\) is equal to :

1 6575
2 6825
3 6875
4 6525
Limits, Continuity and Differentiability

80218 Let \(f, g: R \rightarrow\) be two real valued functions defined as \(f(x)=\left\{\begin{aligned}-|x+3|, x\lt 0 \\ e^{x}, x>0\end{aligned}\right.\) and \(g(x)=\left\{\begin{array}{ll}x^{2}+k_{1} x, x\lt 0 \\ 4 x+k_{2}, x \geq 0\end{array}\right.\), where \(k_{1}\) and \(k_{2}\) are real constants. If (gof) is differentiable at \(x=0\), then (gof) (-4) \(+(\) gof \()(4)\) is equal to :

1 \(4\left(\mathrm{e}^{4}+1\right)\)
2 \(2\left(2 \mathrm{e}^{4}+1\right)\)
3 \(4 \mathrm{e}^{4}\)
4 \(2\left(2 \mathrm{e}^{4}-1\right)\)
Limits, Continuity and Differentiability

80219 The set of all points where the function \(f(x)=\) \(\mathbf{2 x}|\mathbf{x}|\) is differentiable is

1 \((-\infty, \infty)\)
2 \((-\infty, 0) \cup(0, \infty)\)
3 \((0, \infty)\)
4 \([0, \infty)\)