Finding Differentiability using Differentiation
Limits, Continuity and Differentiability

80220 The function \(f(x)=x-[x]\) where [ ] denotes the greatest integer function is

1 continuous everywhere
2 continuous at integer points only
3 continuous at non integer points only
4 nowhere continuous
Limits, Continuity and Differentiability

80221 Let \(f:[0,1] \rightarrow \mathrm{R}\) (the set of all real numbers) be a function. Suppose the function \(f\) is twice differentiable, \(f(0)=f(1)=0\) and satisfies \(f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]\). If the function \(\mathrm{e}^{-\mathrm{x}} f(\mathrm{x})\) assumes its minimum in the interval \([0,1]\) at \(x=\frac{1}{4}\), which of the following is true?

1 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), \frac{1}{4}\lt \mathrm{x}\lt \frac{3}{4}\)
2 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), 0\lt \mathrm{x}\lt \frac{1}{4}\)
3 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), 0\lt \mathrm{x}\lt \frac{1}{4}\)
4 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), \frac{3}{4}\lt \mathrm{x}\lt 1\)
Limits, Continuity and Differentiability

80222 If \(x \sin (\alpha+y)=\sin y\) and \(y=\frac{m}{x^{2}+2 n x+1}\), then \(\mathbf{m}^{2}=\)

1 \(1-n^{2}\)
2 \(1+n\)
3 \(1-\mathrm{n}\)
4 \(n^{2}-1\)
Limits, Continuity and Differentiability

80223 The number of points in the interval \((0,2)\) at which \(\quad f(x)=|x-0.5|+|x-1|+\tan x \quad\) is not differentiable is

1 1
2 2
3 3
4 4
Limits, Continuity and Differentiability

80220 The function \(f(x)=x-[x]\) where [ ] denotes the greatest integer function is

1 continuous everywhere
2 continuous at integer points only
3 continuous at non integer points only
4 nowhere continuous
Limits, Continuity and Differentiability

80221 Let \(f:[0,1] \rightarrow \mathrm{R}\) (the set of all real numbers) be a function. Suppose the function \(f\) is twice differentiable, \(f(0)=f(1)=0\) and satisfies \(f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]\). If the function \(\mathrm{e}^{-\mathrm{x}} f(\mathrm{x})\) assumes its minimum in the interval \([0,1]\) at \(x=\frac{1}{4}\), which of the following is true?

1 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), \frac{1}{4}\lt \mathrm{x}\lt \frac{3}{4}\)
2 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), 0\lt \mathrm{x}\lt \frac{1}{4}\)
3 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), 0\lt \mathrm{x}\lt \frac{1}{4}\)
4 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), \frac{3}{4}\lt \mathrm{x}\lt 1\)
Limits, Continuity and Differentiability

80222 If \(x \sin (\alpha+y)=\sin y\) and \(y=\frac{m}{x^{2}+2 n x+1}\), then \(\mathbf{m}^{2}=\)

1 \(1-n^{2}\)
2 \(1+n\)
3 \(1-\mathrm{n}\)
4 \(n^{2}-1\)
Limits, Continuity and Differentiability

80223 The number of points in the interval \((0,2)\) at which \(\quad f(x)=|x-0.5|+|x-1|+\tan x \quad\) is not differentiable is

1 1
2 2
3 3
4 4
Limits, Continuity and Differentiability

80220 The function \(f(x)=x-[x]\) where [ ] denotes the greatest integer function is

1 continuous everywhere
2 continuous at integer points only
3 continuous at non integer points only
4 nowhere continuous
Limits, Continuity and Differentiability

80221 Let \(f:[0,1] \rightarrow \mathrm{R}\) (the set of all real numbers) be a function. Suppose the function \(f\) is twice differentiable, \(f(0)=f(1)=0\) and satisfies \(f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]\). If the function \(\mathrm{e}^{-\mathrm{x}} f(\mathrm{x})\) assumes its minimum in the interval \([0,1]\) at \(x=\frac{1}{4}\), which of the following is true?

1 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), \frac{1}{4}\lt \mathrm{x}\lt \frac{3}{4}\)
2 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), 0\lt \mathrm{x}\lt \frac{1}{4}\)
3 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), 0\lt \mathrm{x}\lt \frac{1}{4}\)
4 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), \frac{3}{4}\lt \mathrm{x}\lt 1\)
Limits, Continuity and Differentiability

80222 If \(x \sin (\alpha+y)=\sin y\) and \(y=\frac{m}{x^{2}+2 n x+1}\), then \(\mathbf{m}^{2}=\)

1 \(1-n^{2}\)
2 \(1+n\)
3 \(1-\mathrm{n}\)
4 \(n^{2}-1\)
Limits, Continuity and Differentiability

80223 The number of points in the interval \((0,2)\) at which \(\quad f(x)=|x-0.5|+|x-1|+\tan x \quad\) is not differentiable is

1 1
2 2
3 3
4 4
Limits, Continuity and Differentiability

80220 The function \(f(x)=x-[x]\) where [ ] denotes the greatest integer function is

1 continuous everywhere
2 continuous at integer points only
3 continuous at non integer points only
4 nowhere continuous
Limits, Continuity and Differentiability

80221 Let \(f:[0,1] \rightarrow \mathrm{R}\) (the set of all real numbers) be a function. Suppose the function \(f\) is twice differentiable, \(f(0)=f(1)=0\) and satisfies \(f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]\). If the function \(\mathrm{e}^{-\mathrm{x}} f(\mathrm{x})\) assumes its minimum in the interval \([0,1]\) at \(x=\frac{1}{4}\), which of the following is true?

1 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), \frac{1}{4}\lt \mathrm{x}\lt \frac{3}{4}\)
2 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), 0\lt \mathrm{x}\lt \frac{1}{4}\)
3 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), 0\lt \mathrm{x}\lt \frac{1}{4}\)
4 \(f^{\prime}(\mathrm{x})\lt f(\mathrm{x}), \frac{3}{4}\lt \mathrm{x}\lt 1\)
Limits, Continuity and Differentiability

80222 If \(x \sin (\alpha+y)=\sin y\) and \(y=\frac{m}{x^{2}+2 n x+1}\), then \(\mathbf{m}^{2}=\)

1 \(1-n^{2}\)
2 \(1+n\)
3 \(1-\mathrm{n}\)
4 \(n^{2}-1\)
Limits, Continuity and Differentiability

80223 The number of points in the interval \((0,2)\) at which \(\quad f(x)=|x-0.5|+|x-1|+\tan x \quad\) is not differentiable is

1 1
2 2
3 3
4 4