80214
Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is
80215
The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\) \(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :
1 1
2 2
3 3
4 4
Explanation:
(C) : \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) \(f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\left|x^{2}-5 x+4\right|\) \(=|\mathrm{x}-1| \cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-1||\mathrm{x}-4|\) \(=|\mathrm{x}-1|[\cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-4|]\) So, there are only three point \(\mathrm{x}=1,2\) and \(\mathrm{x}=4\) where \(\mathrm{f}(\mathrm{x})\) is not differentiable.
80214
Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is
80215
The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\) \(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :
1 1
2 2
3 3
4 4
Explanation:
(C) : \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) \(f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\left|x^{2}-5 x+4\right|\) \(=|\mathrm{x}-1| \cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-1||\mathrm{x}-4|\) \(=|\mathrm{x}-1|[\cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-4|]\) So, there are only three point \(\mathrm{x}=1,2\) and \(\mathrm{x}=4\) where \(\mathrm{f}(\mathrm{x})\) is not differentiable.
80214
Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is
80215
The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\) \(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :
1 1
2 2
3 3
4 4
Explanation:
(C) : \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) \(f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\left|x^{2}-5 x+4\right|\) \(=|\mathrm{x}-1| \cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-1||\mathrm{x}-4|\) \(=|\mathrm{x}-1|[\cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-4|]\) So, there are only three point \(\mathrm{x}=1,2\) and \(\mathrm{x}=4\) where \(\mathrm{f}(\mathrm{x})\) is not differentiable.
80214
Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is
80215
The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\) \(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :
1 1
2 2
3 3
4 4
Explanation:
(C) : \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) \(f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\left|x^{2}-5 x+4\right|\) \(=|\mathrm{x}-1| \cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-1||\mathrm{x}-4|\) \(=|\mathrm{x}-1|[\cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-4|]\) So, there are only three point \(\mathrm{x}=1,2\) and \(\mathrm{x}=4\) where \(\mathrm{f}(\mathrm{x})\) is not differentiable.
80214
Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is
80215
The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\) \(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :
1 1
2 2
3 3
4 4
Explanation:
(C) : \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) \(f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\left|x^{2}-5 x+4\right|\) \(=|\mathrm{x}-1| \cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-1||\mathrm{x}-4|\) \(=|\mathrm{x}-1|[\cos |\mathrm{x}-2| \sin |\mathrm{x}-1|+(\mathrm{x}-3)|\mathrm{x}-4|]\) So, there are only three point \(\mathrm{x}=1,2\) and \(\mathrm{x}=4\) where \(\mathrm{f}(\mathrm{x})\) is not differentiable.