Finding Differentiability using Differentiation
Limits, Continuity and Differentiability

80211 If \(y=\left(1+x^{1 / 4}\right)\left(1+x^{1 / 2}\right)\left(1-x^{1 / 4}\right)\), then \(d y / d x\) equals-

1 -1
2 1
3 \(\mathrm{x}\)
4 \(\sqrt{\mathrm{x}}\)
Limits, Continuity and Differentiability

80212 If \(f(t)=\frac{1-t}{1+t}\), then \(f^{\prime}(1 / t)\) is equal to

1 \(\frac{1}{(1+t)^{2}}\)
2 \(\quad \frac{1}{(1-t)^{2}}\)
3 \(\frac{-2 t^{2}}{(1+t)^{2}}\)
4 \(\frac{2}{(1-t)^{2}}\)
Limits, Continuity and Differentiability

80213 Let \(f(x+y)=f(x) . f(y)\) for all \(x, y\) where \(f(0) \neq 0\). If \(f(5)=2\) and \(f^{\prime}(0)=3\), then \(f^{\prime}(5)\) is equal to-

1 6
2 0
3 1
4 None of these
Limits, Continuity and Differentiability

80214 Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is

1 0
2 1
3 3
4 5
Limits, Continuity and Differentiability

80215 The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\)
\(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :

1 1
2 2
3 3
4 4
Limits, Continuity and Differentiability

80211 If \(y=\left(1+x^{1 / 4}\right)\left(1+x^{1 / 2}\right)\left(1-x^{1 / 4}\right)\), then \(d y / d x\) equals-

1 -1
2 1
3 \(\mathrm{x}\)
4 \(\sqrt{\mathrm{x}}\)
Limits, Continuity and Differentiability

80212 If \(f(t)=\frac{1-t}{1+t}\), then \(f^{\prime}(1 / t)\) is equal to

1 \(\frac{1}{(1+t)^{2}}\)
2 \(\quad \frac{1}{(1-t)^{2}}\)
3 \(\frac{-2 t^{2}}{(1+t)^{2}}\)
4 \(\frac{2}{(1-t)^{2}}\)
Limits, Continuity and Differentiability

80213 Let \(f(x+y)=f(x) . f(y)\) for all \(x, y\) where \(f(0) \neq 0\). If \(f(5)=2\) and \(f^{\prime}(0)=3\), then \(f^{\prime}(5)\) is equal to-

1 6
2 0
3 1
4 None of these
Limits, Continuity and Differentiability

80214 Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is

1 0
2 1
3 3
4 5
Limits, Continuity and Differentiability

80215 The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\)
\(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :

1 1
2 2
3 3
4 4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80211 If \(y=\left(1+x^{1 / 4}\right)\left(1+x^{1 / 2}\right)\left(1-x^{1 / 4}\right)\), then \(d y / d x\) equals-

1 -1
2 1
3 \(\mathrm{x}\)
4 \(\sqrt{\mathrm{x}}\)
Limits, Continuity and Differentiability

80212 If \(f(t)=\frac{1-t}{1+t}\), then \(f^{\prime}(1 / t)\) is equal to

1 \(\frac{1}{(1+t)^{2}}\)
2 \(\quad \frac{1}{(1-t)^{2}}\)
3 \(\frac{-2 t^{2}}{(1+t)^{2}}\)
4 \(\frac{2}{(1-t)^{2}}\)
Limits, Continuity and Differentiability

80213 Let \(f(x+y)=f(x) . f(y)\) for all \(x, y\) where \(f(0) \neq 0\). If \(f(5)=2\) and \(f^{\prime}(0)=3\), then \(f^{\prime}(5)\) is equal to-

1 6
2 0
3 1
4 None of these
Limits, Continuity and Differentiability

80214 Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is

1 0
2 1
3 3
4 5
Limits, Continuity and Differentiability

80215 The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\)
\(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :

1 1
2 2
3 3
4 4
Limits, Continuity and Differentiability

80211 If \(y=\left(1+x^{1 / 4}\right)\left(1+x^{1 / 2}\right)\left(1-x^{1 / 4}\right)\), then \(d y / d x\) equals-

1 -1
2 1
3 \(\mathrm{x}\)
4 \(\sqrt{\mathrm{x}}\)
Limits, Continuity and Differentiability

80212 If \(f(t)=\frac{1-t}{1+t}\), then \(f^{\prime}(1 / t)\) is equal to

1 \(\frac{1}{(1+t)^{2}}\)
2 \(\quad \frac{1}{(1-t)^{2}}\)
3 \(\frac{-2 t^{2}}{(1+t)^{2}}\)
4 \(\frac{2}{(1-t)^{2}}\)
Limits, Continuity and Differentiability

80213 Let \(f(x+y)=f(x) . f(y)\) for all \(x, y\) where \(f(0) \neq 0\). If \(f(5)=2\) and \(f^{\prime}(0)=3\), then \(f^{\prime}(5)\) is equal to-

1 6
2 0
3 1
4 None of these
Limits, Continuity and Differentiability

80214 Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is

1 0
2 1
3 3
4 5
Limits, Continuity and Differentiability

80215 The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\)
\(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :

1 1
2 2
3 3
4 4
Limits, Continuity and Differentiability

80211 If \(y=\left(1+x^{1 / 4}\right)\left(1+x^{1 / 2}\right)\left(1-x^{1 / 4}\right)\), then \(d y / d x\) equals-

1 -1
2 1
3 \(\mathrm{x}\)
4 \(\sqrt{\mathrm{x}}\)
Limits, Continuity and Differentiability

80212 If \(f(t)=\frac{1-t}{1+t}\), then \(f^{\prime}(1 / t)\) is equal to

1 \(\frac{1}{(1+t)^{2}}\)
2 \(\quad \frac{1}{(1-t)^{2}}\)
3 \(\frac{-2 t^{2}}{(1+t)^{2}}\)
4 \(\frac{2}{(1-t)^{2}}\)
Limits, Continuity and Differentiability

80213 Let \(f(x+y)=f(x) . f(y)\) for all \(x, y\) where \(f(0) \neq 0\). If \(f(5)=2\) and \(f^{\prime}(0)=3\), then \(f^{\prime}(5)\) is equal to-

1 6
2 0
3 1
4 None of these
Limits, Continuity and Differentiability

80214 Let \(f(x)=\left(x^{5}-1\right)\left(x^{3}+1\right)\), \(g(x)=\left(x^{2}-1\right)\left(x^{2}-x+1\right)\) and let \(h(x)\) be such that \(f(x)=g(x) h(x)\). Then \(\lim _{x \rightarrow 1} h(x)\) is

1 0
2 1
3 3
4 5
Limits, Continuity and Differentiability

80215 The number of points, where the function \(f: R\) \(\rightarrow R, f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\)
\(\left|x^{2}-5 x+4\right|\), is NOT differentiable, is :

1 1
2 2
3 3
4 4