Differentiability and Continuity of Function
Limits, Continuity and Differentiability

80004 If \(f(x)=f\left\{\begin{array}{l}\mathrm{ax}^{2}-b,-1\lt \mathrm{x}\lt 1 \\ \frac{1}{|\mathrm{x}|},|\mathrm{x}| \geq 1\end{array}\right.\) is differentiable at \(x=1\), then

1 \(a=-1 / 2, b=-3 / 2\)
2 \(\mathrm{a}=-1 / 2, \mathrm{~b}=3 / 2\)
3 \(\mathrm{a}=1 / 2, \mathrm{~b}=-3 / 2\)
4 \(\mathrm{a}=1 / 2, \mathrm{~b}=3 / 2\)
Limits, Continuity and Differentiability

80005 Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is

1 continuous if \(\mathrm{a}=5\) and \(\mathrm{b}=5\)
2 continuous if \(a=0\) and \(b=5\)
3 continuous if \(\mathrm{a}=-5\) and \(\mathrm{b}=10\)
4 not continuous for any values of \(a\) and \(b\)
Limits, Continuity and Differentiability

80007 The function of \(f(x)=|x|+\frac{|x|}{x}\) is

1 continuous at the origin
2 discontinuous at the origin because \(|x|\) is discontinuous there
3 discontinuous at the origin because \(\frac{|\mathrm{x}|}{\mathrm{x}}\) is discontinuous there
4 discontinuous at the origin because both \(|\mathrm{x}|\) an \(\frac{|x|}{x}\) are discontinuous
Limits, Continuity and Differentiability

80008 If \(f: R \rightarrow R\) defined by.
\(f(x)=\left\{\begin{array}{cc}\frac{1+3 x^{2}-\cos 2 x}{x^{2}} , \text { for } x \neq 0 \\ k , \text { for } x \neq 0\end{array}\right.\)
is continuous at \(x=0\), then \(k\) is equal to.

1 1
2 5
3 6
4 0
Limits, Continuity and Differentiability

80009 If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to

1 \((-2,1)\)
2 \((-2,-1)\)
3 \((-1, \sqrt{3})\)
4 \((-2,-\sqrt{3})\)
Limits, Continuity and Differentiability

80004 If \(f(x)=f\left\{\begin{array}{l}\mathrm{ax}^{2}-b,-1\lt \mathrm{x}\lt 1 \\ \frac{1}{|\mathrm{x}|},|\mathrm{x}| \geq 1\end{array}\right.\) is differentiable at \(x=1\), then

1 \(a=-1 / 2, b=-3 / 2\)
2 \(\mathrm{a}=-1 / 2, \mathrm{~b}=3 / 2\)
3 \(\mathrm{a}=1 / 2, \mathrm{~b}=-3 / 2\)
4 \(\mathrm{a}=1 / 2, \mathrm{~b}=3 / 2\)
Limits, Continuity and Differentiability

80005 Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is

1 continuous if \(\mathrm{a}=5\) and \(\mathrm{b}=5\)
2 continuous if \(a=0\) and \(b=5\)
3 continuous if \(\mathrm{a}=-5\) and \(\mathrm{b}=10\)
4 not continuous for any values of \(a\) and \(b\)
Limits, Continuity and Differentiability

80007 The function of \(f(x)=|x|+\frac{|x|}{x}\) is

1 continuous at the origin
2 discontinuous at the origin because \(|x|\) is discontinuous there
3 discontinuous at the origin because \(\frac{|\mathrm{x}|}{\mathrm{x}}\) is discontinuous there
4 discontinuous at the origin because both \(|\mathrm{x}|\) an \(\frac{|x|}{x}\) are discontinuous
Limits, Continuity and Differentiability

80008 If \(f: R \rightarrow R\) defined by.
\(f(x)=\left\{\begin{array}{cc}\frac{1+3 x^{2}-\cos 2 x}{x^{2}} , \text { for } x \neq 0 \\ k , \text { for } x \neq 0\end{array}\right.\)
is continuous at \(x=0\), then \(k\) is equal to.

1 1
2 5
3 6
4 0
Limits, Continuity and Differentiability

80009 If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to

1 \((-2,1)\)
2 \((-2,-1)\)
3 \((-1, \sqrt{3})\)
4 \((-2,-\sqrt{3})\)
Limits, Continuity and Differentiability

80004 If \(f(x)=f\left\{\begin{array}{l}\mathrm{ax}^{2}-b,-1\lt \mathrm{x}\lt 1 \\ \frac{1}{|\mathrm{x}|},|\mathrm{x}| \geq 1\end{array}\right.\) is differentiable at \(x=1\), then

1 \(a=-1 / 2, b=-3 / 2\)
2 \(\mathrm{a}=-1 / 2, \mathrm{~b}=3 / 2\)
3 \(\mathrm{a}=1 / 2, \mathrm{~b}=-3 / 2\)
4 \(\mathrm{a}=1 / 2, \mathrm{~b}=3 / 2\)
Limits, Continuity and Differentiability

80005 Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is

1 continuous if \(\mathrm{a}=5\) and \(\mathrm{b}=5\)
2 continuous if \(a=0\) and \(b=5\)
3 continuous if \(\mathrm{a}=-5\) and \(\mathrm{b}=10\)
4 not continuous for any values of \(a\) and \(b\)
Limits, Continuity and Differentiability

80007 The function of \(f(x)=|x|+\frac{|x|}{x}\) is

1 continuous at the origin
2 discontinuous at the origin because \(|x|\) is discontinuous there
3 discontinuous at the origin because \(\frac{|\mathrm{x}|}{\mathrm{x}}\) is discontinuous there
4 discontinuous at the origin because both \(|\mathrm{x}|\) an \(\frac{|x|}{x}\) are discontinuous
Limits, Continuity and Differentiability

80008 If \(f: R \rightarrow R\) defined by.
\(f(x)=\left\{\begin{array}{cc}\frac{1+3 x^{2}-\cos 2 x}{x^{2}} , \text { for } x \neq 0 \\ k , \text { for } x \neq 0\end{array}\right.\)
is continuous at \(x=0\), then \(k\) is equal to.

1 1
2 5
3 6
4 0
Limits, Continuity and Differentiability

80009 If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to

1 \((-2,1)\)
2 \((-2,-1)\)
3 \((-1, \sqrt{3})\)
4 \((-2,-\sqrt{3})\)
Limits, Continuity and Differentiability

80004 If \(f(x)=f\left\{\begin{array}{l}\mathrm{ax}^{2}-b,-1\lt \mathrm{x}\lt 1 \\ \frac{1}{|\mathrm{x}|},|\mathrm{x}| \geq 1\end{array}\right.\) is differentiable at \(x=1\), then

1 \(a=-1 / 2, b=-3 / 2\)
2 \(\mathrm{a}=-1 / 2, \mathrm{~b}=3 / 2\)
3 \(\mathrm{a}=1 / 2, \mathrm{~b}=-3 / 2\)
4 \(\mathrm{a}=1 / 2, \mathrm{~b}=3 / 2\)
Limits, Continuity and Differentiability

80005 Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is

1 continuous if \(\mathrm{a}=5\) and \(\mathrm{b}=5\)
2 continuous if \(a=0\) and \(b=5\)
3 continuous if \(\mathrm{a}=-5\) and \(\mathrm{b}=10\)
4 not continuous for any values of \(a\) and \(b\)
Limits, Continuity and Differentiability

80007 The function of \(f(x)=|x|+\frac{|x|}{x}\) is

1 continuous at the origin
2 discontinuous at the origin because \(|x|\) is discontinuous there
3 discontinuous at the origin because \(\frac{|\mathrm{x}|}{\mathrm{x}}\) is discontinuous there
4 discontinuous at the origin because both \(|\mathrm{x}|\) an \(\frac{|x|}{x}\) are discontinuous
Limits, Continuity and Differentiability

80008 If \(f: R \rightarrow R\) defined by.
\(f(x)=\left\{\begin{array}{cc}\frac{1+3 x^{2}-\cos 2 x}{x^{2}} , \text { for } x \neq 0 \\ k , \text { for } x \neq 0\end{array}\right.\)
is continuous at \(x=0\), then \(k\) is equal to.

1 1
2 5
3 6
4 0
Limits, Continuity and Differentiability

80009 If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to

1 \((-2,1)\)
2 \((-2,-1)\)
3 \((-1, \sqrt{3})\)
4 \((-2,-\sqrt{3})\)
Limits, Continuity and Differentiability

80004 If \(f(x)=f\left\{\begin{array}{l}\mathrm{ax}^{2}-b,-1\lt \mathrm{x}\lt 1 \\ \frac{1}{|\mathrm{x}|},|\mathrm{x}| \geq 1\end{array}\right.\) is differentiable at \(x=1\), then

1 \(a=-1 / 2, b=-3 / 2\)
2 \(\mathrm{a}=-1 / 2, \mathrm{~b}=3 / 2\)
3 \(\mathrm{a}=1 / 2, \mathrm{~b}=-3 / 2\)
4 \(\mathrm{a}=1 / 2, \mathrm{~b}=3 / 2\)
Limits, Continuity and Differentiability

80005 Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is

1 continuous if \(\mathrm{a}=5\) and \(\mathrm{b}=5\)
2 continuous if \(a=0\) and \(b=5\)
3 continuous if \(\mathrm{a}=-5\) and \(\mathrm{b}=10\)
4 not continuous for any values of \(a\) and \(b\)
Limits, Continuity and Differentiability

80007 The function of \(f(x)=|x|+\frac{|x|}{x}\) is

1 continuous at the origin
2 discontinuous at the origin because \(|x|\) is discontinuous there
3 discontinuous at the origin because \(\frac{|\mathrm{x}|}{\mathrm{x}}\) is discontinuous there
4 discontinuous at the origin because both \(|\mathrm{x}|\) an \(\frac{|x|}{x}\) are discontinuous
Limits, Continuity and Differentiability

80008 If \(f: R \rightarrow R\) defined by.
\(f(x)=\left\{\begin{array}{cc}\frac{1+3 x^{2}-\cos 2 x}{x^{2}} , \text { for } x \neq 0 \\ k , \text { for } x \neq 0\end{array}\right.\)
is continuous at \(x=0\), then \(k\) is equal to.

1 1
2 5
3 6
4 0
Limits, Continuity and Differentiability

80009 If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to

1 \((-2,1)\)
2 \((-2,-1)\)
3 \((-1, \sqrt{3})\)
4 \((-2,-\sqrt{3})\)