80005
Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is
80009
If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to
80005
Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is
80009
If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to
80005
Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is
80009
If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to
80005
Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is
80009
If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to
80005
Let \(f: \mathrm{R} \rightarrow \mathrm{R}\) be the function defined by
\(f(x)=\left\{\begin{array}{cc}5, \text { if } x \leq 1 \\ a+b x, \text { if } 1\lt x\lt 3 \\ b+5 x, \text { if } 3 \leq x\lt 5 \\ 30, \text { if } x \leq 5\end{array}\right.\) then \(f\) is
80009
If \([x]\) denotes the greatest integer not exceeding \(x\) and if the function \(f\) defined by
\(f(x)= \begin{cases}\frac{a+2 \cos x}{x^{2}}, (x\lt 0) \\ b \tan \frac{\pi}{(x+4)}, (x \geq 0)\end{cases}\)
is continuous at \(x=0\), then the ordered pair (a, b) is equal to